Previous Page  16 / 17 Next Page
Information
Show Menu
Previous Page 16 / 17 Next Page
Page Background

16.

Андронов А.А.

,

Леонтович М.А.

О колебаниях системы с периодически меняю-

щимися параметрами // Журн. русск. физ.-хим. общ. Часть физич. 1927. Т. 59.

Вып. 5–6. C. 429–443.

17.

Бардин Б.С.

,

Маркеев А.П.

Об устойчивости равновесия маятника при верти-

кальных колебаниях точки подвеса // Прикладная математика и механика. 1995.

Т. 59. Вып. 6. С. 923–929.

18.

Челомей С.В.

О двух задачах динамической устойчивости колебательных си-

стем, поставленных академиками П.Л. Капицей и В.Н. Челомеем // Изв. АН

СССР. МТТ. 1999. № 6. С. 159–166.

19.

Otterbein S.

Stabilisierung des

n

-Pendels und der Indische Seiltrick // Archive for

Rational Mechanics and Analysis, 1982. Vol. 78. Р. 381–393.

20.

Floquet G.

Sur les ´equations diff´erentielles lin´eaires `a coefficients p´eriodiques // Ann.

Sci. ´Ecole Norm. Sup. 1883. Vol. 12. Р. 47–89.

21.

Четаев Н.Г.

Устойчивость движения. М.: Наука, 1990. 176 с.

REFERENCES

[1] Сhelomey V.N. Paradoxes in mechanics, vibrations caused.

Doklady Akademii Nauk

SSSR

[Proc. of the USSR Akademy of Sciences], 1983. vol. 270, no. 1. pp. 62–67

(in Russ.).

[2] Stephenson A. On a New Type of Dynamical Stability.

Memoirs and Proceedings

of the Manchester Literary and Philosophical Society

, 1908, vol. 52, no. 8, part II,

pp. 1–10.

[3] Bogolyubov N.N. Perturbation Theory in Nonlinear Mechanics.

Sb. Inst. Stroitelnoy

mehaniki AN USSR

[Collection of Papers of the Institute of Structural Mechanics

Academy of Science of Ukraine], 1950, vol. 14, no. 2. pp. 9–34 (in Russ.).

[4] Kapitsa P.L. Dynamic Stability of a Pendulum with a Vibrating Suspension Point.

Zh. Eksp. Teor. Fiz.

[J. Exp. Theor. Phys.], 1951, vol. 21, no. 5, pp. 588–597 (in

Russ.).

[5] Kapitsa P.L. The Pendulum with a Vibrating Suspension.

Usp. Fiz. Nauk

[Sov. Phys.-

Usp.], 1951, vol. 44, no. 1. pp. 7–20 (in Russ.).

[6]

Arkhipova I.M., Luongo A. Seyranian A.P.

Vibrational Stabilization of the Upright

Statically Unstable Position of a Double Pendulum.

J. of Sound and Vibration

, 2012,

vol. 331. pp. 457–469.

[7] Sorokin V.S. Analysis of Motion of Inverted Pendulum with Vibrating Suspension

Axis at Low-Frequency Excitation as an Illustration of a New Approach for Solving

Equation without Explicit Small Parameter.

International J. of Non-Linear Mechanic

,

2014, vol. 63. July, pp. 1–9.

[8] Markeev A.P. On the Stability of Nonlinear Oscillations Coupled Pendulums.

Izv.

Akad. Nauk, Mekh. Tverd. Tela

[Mech. Solids], 2013, no. 4, pp. 20–30 (in Russ.).

[9] Beletskiy V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system [The

Dynamics of Space Tether Systems]. Moscow, Nauka Publ., 1990. 336 p.

[10] Alpatov A.P., Beletskiy V.V., Dranovskiy V.I., Zakrzhevskiy A.E., Pirozhenko

A.V., Troger G., Horochilov V.S. Dinamika kosmicheskikh sistem s trosovymi i

sharnirnymi soedineniyami [Dynamics Space Systems and Rope Swivels]. Moscow–

Izhevsk, NIC Regul. i khaot. dinamika. Inst. Komp’yut. issl. Publ., 2007. 559 p.

[11] Strizhak T.G. Metod usredneniya v zadachakh mehaniki [The Averaging Method in

Mechanics Problems]. Kiev–Donetsk., Vysh. Shkola, 1982. 250 p.

[12] Acheson D.J., Mullin T. Upside-Down Pendulums.

Nature

, 1993, vol. 366, pp. 215–

216.

[13] Mathieu E. M´emoiresur le mouvement vibratoired´une membrane de formeelliptique.

Jour. de Math. Pureset Appliqu´es

(Jour. De Liouville), 1868, vol. 13, pp. 137–203.

48 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2015. № 6