Previous Page  19 / 20 Next Page
Information
Show Menu
Previous Page 19 / 20 Next Page
Page Background

В.А. Бернс, Е.П. Жуков, Д.А. Маринин

22

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 4

not always available. The article looks at the identification

technique of the structures dissipative properties according

to the results of modal testing by the phase resonance me-

thod. The full-scale dynamic system is described by the

mathematical model with the finite number of degrees of

freedom. In order to identify the damping forces properties,

the ratios between forced monophasic vibrations and struc-

tural eigenmodes are used. As an example, a mathematical

model of a dynamically similar model of the aircraft is con-

structed, which describes a number of the structure

eigenmodes. A good agreement of the design and experi-

mental amplitude-frequency characteristics of the object is

observed. The full-scale aircraft test results, permitting to

identify the aircraft dissipative properties are shown

REFERENCES

[1] Mezhin V.S., Obukhov V.V. The practice of using modal tests to verify finite element mo-

dels of rocket and space hardware.

Kosmicheskaya tekhnika i tekhnologii

[Space engineering

and technology], 2014, no. 1 (4), pp. 86–91 (in Russ.).

[2] Druzhinin E.I. Adjustment of analytical models of space structures according to their con-

dition in real conditions.

Yubileynaya XV St.-Peterburgskaya mezhdunar. konf. po integriro-

vannym navigatsionnym sistemam. Sb. tr.

[Proc. of 15th St. Petersburg Int. Conf. on Integrated

Navigation Systems], St.Petersburg, 2008, pp. 207–208 (in Russ.).

[3] Pisarenko G.S., Matveev V.V., Yakovlev A.P. Metody opredeleniya kharakteristik demp-

firovaniya kolebaniy uprugikh sistem [Methods of determining the characteristics of vibration

damping in elastic systems]. Kiev, Nauk. Dumka Publ., 1976. 88 p.

[4] Maksimov P.V. About how to specify the dissipative characteristics of dynamic MEMS

systems.

Nauch. tr. SWorld

[Sci. Proc. SWorld], 2012, vol. 3, no. 2, pp. 37–39 (in Russ.).

[5] Varlamov A.V., Grechishnikov V.M., Varlamova

N.Kh

., Dudin M.P. The model of hetero-

geneous elastoviscoplastic body in the description of hereditary and dissipative properties

Vestnik SamGUPS

[Bull. of SamGUPS], 2011, no. 1, pp. 165–169 (in Russ.).

[6] Dmitriev S.N., Khamidullin R.K. Damping matrix correction using experimental modal

damping coefficients.

Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i innovacii”

[El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2013, iss. 3.

DOI:

10.18698/2308-6033-2013-3-619. Available at:

http://engjournal.ru/eng/catalog/

machin/rocket/619.html

[7] Klebanov Ya.M., Bruyaka V.A., Vavilov M.A. The determination of the optimum damping

characteristics to refine finite element models of the product when modelling vibration tests.

Matematicheskoe modelirovanie i kraevye zadachi. Tr. devyatoy Vseross. Nauch. konf. s

mezhdunar. uchastiem

[Proc. of Ninth All-Russian Sci. Conf. “Mathematical Modeling and

Boundary-Value Problems”], Samara, 2013, pp. 90–94 (in Russ.).

[8] Mikishev G.N., Rabinovich B.I. Dinamika tonkostennykh konstruktsiy s otsekami,

soderzhashchimi zhidkost' [Dynamics of thin-walled structures with compartments contain-

ing liquid]. Moscow, Mashinostroenie Publ., 1971. 564 p.

[9] Kononenko V.O., Plakhtienko N.P. Metody identifikatsii mekhanicheskikh nelineynykh

kolebatel'nykh sistem [Methods of the mechanical nonlinear vibrating systems identification].

Kiev, Nauk. Dumka Publ., 1976. 114 p.

[10] Smyslov V.I. The study of oscillations of a linear system with multipoint excitation, and

measurement automation.

Tr. TsAGI

[Proc. of TsAGI], 1970, iss. 1217, pp. 64–86 (in Russ.).