В.А. Бернс, Е.П. Жуков, Д.А. Маринин
22
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 4
not always available. The article looks at the identification
technique of the structures dissipative properties according
to the results of modal testing by the phase resonance me-
thod. The full-scale dynamic system is described by the
mathematical model with the finite number of degrees of
freedom. In order to identify the damping forces properties,
the ratios between forced monophasic vibrations and struc-
tural eigenmodes are used. As an example, a mathematical
model of a dynamically similar model of the aircraft is con-
structed, which describes a number of the structure
eigenmodes. A good agreement of the design and experi-
mental amplitude-frequency characteristics of the object is
observed. The full-scale aircraft test results, permitting to
identify the aircraft dissipative properties are shown
REFERENCES
[1] Mezhin V.S., Obukhov V.V. The practice of using modal tests to verify finite element mo-
dels of rocket and space hardware.
Kosmicheskaya tekhnika i tekhnologii
[Space engineering
and technology], 2014, no. 1 (4), pp. 86–91 (in Russ.).
[2] Druzhinin E.I. Adjustment of analytical models of space structures according to their con-
dition in real conditions.
Yubileynaya XV St.-Peterburgskaya mezhdunar. konf. po integriro-
vannym navigatsionnym sistemam. Sb. tr.
[Proc. of 15th St. Petersburg Int. Conf. on Integrated
Navigation Systems], St.Petersburg, 2008, pp. 207–208 (in Russ.).
[3] Pisarenko G.S., Matveev V.V., Yakovlev A.P. Metody opredeleniya kharakteristik demp-
firovaniya kolebaniy uprugikh sistem [Methods of determining the characteristics of vibration
damping in elastic systems]. Kiev, Nauk. Dumka Publ., 1976. 88 p.
[4] Maksimov P.V. About how to specify the dissipative characteristics of dynamic MEMS
systems.
Nauch. tr. SWorld
[Sci. Proc. SWorld], 2012, vol. 3, no. 2, pp. 37–39 (in Russ.).
[5] Varlamov A.V., Grechishnikov V.M., Varlamova
N.Kh., Dudin M.P. The model of hetero-
geneous elastoviscoplastic body in the description of hereditary and dissipative properties
Vestnik SamGUPS
[Bull. of SamGUPS], 2011, no. 1, pp. 165–169 (in Russ.).
[6] Dmitriev S.N., Khamidullin R.K. Damping matrix correction using experimental modal
damping coefficients.
Jelektr. nauchno-tekh. izd. “Inzhenernyy zhurnal: nauka i innovacii”
[El. Sc.-Tech. Publ. “Eng. J.: Science and Innovation”], 2013, iss. 3.
DOI:
10.18698/2308-6033-2013-3-619. Available at:
http://engjournal.ru/eng/catalog/machin/rocket/619.html
[7] Klebanov Ya.M., Bruyaka V.A., Vavilov M.A. The determination of the optimum damping
characteristics to refine finite element models of the product when modelling vibration tests.
Matematicheskoe modelirovanie i kraevye zadachi. Tr. devyatoy Vseross. Nauch. konf. s
mezhdunar. uchastiem
[Proc. of Ninth All-Russian Sci. Conf. “Mathematical Modeling and
Boundary-Value Problems”], Samara, 2013, pp. 90–94 (in Russ.).
[8] Mikishev G.N., Rabinovich B.I. Dinamika tonkostennykh konstruktsiy s otsekami,
soderzhashchimi zhidkost' [Dynamics of thin-walled structures with compartments contain-
ing liquid]. Moscow, Mashinostroenie Publ., 1971. 564 p.
[9] Kononenko V.O., Plakhtienko N.P. Metody identifikatsii mekhanicheskikh nelineynykh
kolebatel'nykh sistem [Methods of the mechanical nonlinear vibrating systems identification].
Kiev, Nauk. Dumka Publ., 1976. 114 p.
[10] Smyslov V.I. The study of oscillations of a linear system with multipoint excitation, and
measurement automation.
Tr. TsAGI
[Proc. of TsAGI], 1970, iss. 1217, pp. 64–86 (in Russ.).