Background Image
Previous Page  13 / 14 Next Page
Information
Show Menu
Previous Page 13 / 14 Next Page
Page Background

[11] Snegiryov

A.Yu.

High-Performance Computing in Technical Physics.Numerical

Simulation of Turbulent Flows. S. Petersburg, Polytechnic University Publ., 2009.

143 p.

[12] Orszag S.A., Yakhot V., Flannery W.S., Boysan F., Choudhury D., Maruzewski J.,

Patel B. Renormalization Group Modeling and Turbulence Simulations.

International

Conference on Near-Wall Turbulent Flows

. Tempe, Arizona, 1993.

[13] Shih, T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J. A New Eddy-Viscosity Model

for High Reynolds Number Turbulent Flows — Model Development and Validation.

Computers Fluids

, 1995, no. 24 (3), pp. 227–238.

[14] Gibson M.M., Launder B.E. Ground Effects on Pressure Fluctuations in the

Atmospheric Boundary Layer.

J. Fluid Mech

., 1978, no. 86, pp. 491–511.

[15] Launder E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress

Turbulence Closure.

J. Fluid Mech

., 1975, no. 68 (3), pp. 537–566.

[16] Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows.

American Institute of Aeronautics and Astronautics. Technical Report

AIAA-92-

0439. 1992.

[17] Wilcox D.C. Turbulence Modeling for CFD.

DCW Industries

, Inc. La Canada,

California, 1998. 460 p.

[18] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering

Applications

AIAA Journal

., 1994, no. 32 (8), pp. 1598–1605.

[19] Menter F.R., Kuntz M., Langtry R. Ten Years of Experience with the SST Turbulence

Model.

Turbulence, Heat and Mass Transfer

, 2003, no. 4, pp. 625–632.

[20] Bradshaw P., Ferriss D.H., Atwell N.P. Calculation of boundary layer development

using the turbulent energy equation.

J. Fluid Mech

., 1967, no. 28, pp. 593–616.

[21] Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flows.

Computer Methods in Applied Mechanics and Engineering

, 1974, no. 3, pp. 269–289.

[22] Bishop A., Todreas N. Hydraulic characteristics of wire-wrapped rod bundles.

Nuclear

Engineering and Design

, 1980, no. 62 (1–3), pp. 271–293.

[23] Cheng S.K., Todreas N. Hydrodynamic models and correlations for bare and wire-

wrapped hexagonal rod bundles-bundle friction factors, sub-channel friction factors

and mixing parameters.

Nuclear engineering and design

, 1986, no. 92, pp. 227–251.

[24] Sobolev V. Fuel Rod and Assembly Proposal for XT-ADS Pre-design.

Coordination

meeting of WP1&WP2 of DM1 IP EUROTRANS

. Bologna, 8–9 February, 2006.

[25] Guidelines, rules, methods of calculation of hydrodynamic and thermal characteristics

of the components and equipment of power plants. Steering Technical material: in

3 vol. Obninsk, 1991, vol. 1. 435 p.

[26] Engel F.C., et al. Laminar, transition and turbulent parallel flow pressure drop

across wire-wrap-spaced rod bundles.

Nuclear science and engineering

, 1979, no. 69,

pp. 290–296.

[27] Rehme K. Pressure drop correlations for fuel element spacers.

Nuclear technology

,

1973, no. 17, pp. 15–23.

[28] Novendstern E.H. Turbulent flow pressure drop model for fuel rod assemblies

utilizing a helical wire-wrap spacer system.

Nuclear Engineering and Design

, 1972,

no. 22, pp. 19–27.

Статья поступила в редакцию 10.06.2014

Фомичев Дмитрий Вадимович — аспирант кафедры “Ядерные реакторы и установ-

ки” МГТУ им. Н.Э. Баумана. Сотрудник отдела “Теплофизика” ОАО “НИКИЭТ”.

Автор трех научных работ в области ядерной энергетики.

ОАО “НИКИЭТ”, Российская Федерация, 107140, Москва, ул. Малая Красносель-

ская, д. 2/8.

Fomichev D.V. — post-graduate of Nuclear Reactors and Plants department of the Bauman

Moscow State Technical University. Employee of Thermal Physics department of the JRC

“NIKIET”. Author of 3 publications in the field of nuclear technologies.

JRC “NIKIET”, Malaya Krasnosel’skaya ul. 2/8, Moscow. 107140 Russian Federation.

16 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2015. № 2