[11] Snegiryov
A.Yu.High-Performance Computing in Technical Physics.Numerical
Simulation of Turbulent Flows. S. Petersburg, Polytechnic University Publ., 2009.
143 p.
[12] Orszag S.A., Yakhot V., Flannery W.S., Boysan F., Choudhury D., Maruzewski J.,
Patel B. Renormalization Group Modeling and Turbulence Simulations.
International
Conference on Near-Wall Turbulent Flows
. Tempe, Arizona, 1993.
[13] Shih, T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J. A New Eddy-Viscosity Model
for High Reynolds Number Turbulent Flows — Model Development and Validation.
Computers Fluids
, 1995, no. 24 (3), pp. 227–238.
[14] Gibson M.M., Launder B.E. Ground Effects on Pressure Fluctuations in the
Atmospheric Boundary Layer.
J. Fluid Mech
., 1978, no. 86, pp. 491–511.
[15] Launder E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress
Turbulence Closure.
J. Fluid Mech
., 1975, no. 68 (3), pp. 537–566.
[16] Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows.
American Institute of Aeronautics and Astronautics. Technical Report
AIAA-92-
0439. 1992.
[17] Wilcox D.C. Turbulence Modeling for CFD.
DCW Industries
, Inc. La Canada,
California, 1998. 460 p.
[18] Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications
AIAA Journal
., 1994, no. 32 (8), pp. 1598–1605.
[19] Menter F.R., Kuntz M., Langtry R. Ten Years of Experience with the SST Turbulence
Model.
Turbulence, Heat and Mass Transfer
, 2003, no. 4, pp. 625–632.
[20] Bradshaw P., Ferriss D.H., Atwell N.P. Calculation of boundary layer development
using the turbulent energy equation.
J. Fluid Mech
., 1967, no. 28, pp. 593–616.
[21] Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flows.
Computer Methods in Applied Mechanics and Engineering
, 1974, no. 3, pp. 269–289.
[22] Bishop A., Todreas N. Hydraulic characteristics of wire-wrapped rod bundles.
Nuclear
Engineering and Design
, 1980, no. 62 (1–3), pp. 271–293.
[23] Cheng S.K., Todreas N. Hydrodynamic models and correlations for bare and wire-
wrapped hexagonal rod bundles-bundle friction factors, sub-channel friction factors
and mixing parameters.
Nuclear engineering and design
, 1986, no. 92, pp. 227–251.
[24] Sobolev V. Fuel Rod and Assembly Proposal for XT-ADS Pre-design.
Coordination
meeting of WP1&WP2 of DM1 IP EUROTRANS
. Bologna, 8–9 February, 2006.
[25] Guidelines, rules, methods of calculation of hydrodynamic and thermal characteristics
of the components and equipment of power plants. Steering Technical material: in
3 vol. Obninsk, 1991, vol. 1. 435 p.
[26] Engel F.C., et al. Laminar, transition and turbulent parallel flow pressure drop
across wire-wrap-spaced rod bundles.
Nuclear science and engineering
, 1979, no. 69,
pp. 290–296.
[27] Rehme K. Pressure drop correlations for fuel element spacers.
Nuclear technology
,
1973, no. 17, pp. 15–23.
[28] Novendstern E.H. Turbulent flow pressure drop model for fuel rod assemblies
utilizing a helical wire-wrap spacer system.
Nuclear Engineering and Design
, 1972,
no. 22, pp. 19–27.
Статья поступила в редакцию 10.06.2014
Фомичев Дмитрий Вадимович — аспирант кафедры “Ядерные реакторы и установ-
ки” МГТУ им. Н.Э. Баумана. Сотрудник отдела “Теплофизика” ОАО “НИКИЭТ”.
Автор трех научных работ в области ядерной энергетики.
ОАО “НИКИЭТ”, Российская Федерация, 107140, Москва, ул. Малая Красносель-
ская, д. 2/8.
Fomichev D.V. — post-graduate of Nuclear Reactors and Plants department of the Bauman
Moscow State Technical University. Employee of Thermal Physics department of the JRC
“NIKIET”. Author of 3 publications in the field of nuclear technologies.
JRC “NIKIET”, Malaya Krasnosel’skaya ul. 2/8, Moscow. 107140 Russian Federation.
16 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2015. № 2