Background Image
Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

the legs operation peculiarities, changes of the horizontal and vertical

velocities of the spacecraft, and the spacecraft angular position after its

landing.

REFERENCES

[1] Kovtunenko V.M. Proektirovanie spuskaemykh avtomaticheskikh kosmicheskikh

apparatov [Constructional design of landing unmanned space vehicles. Moscow,

Mashinostronie Publ., 1985. 264 p.

[2] Bazhenov V.I., Osin M.S. Posadka kosmicheskikh apparatov na planetu [Spacecraft

landing on a planet]. Moscow, Mashinostronie Publ., 1978, 158 p.

[3] Egorov V.A. Prostranstvennaya zadacha dostizheniya Luny. [Spatial problem of

reaching the Moon]. Moscow, Nauka Publ., 1965. 224 p.

[4] Vinogradov A.P. Peredvizhnaya laboratoriya na Lune LUNOKHOD-1. Tom 1 [The

mobile laboratory lunar vehicle LUNOKHOD-1. Vol. 1]. Moscow, Nauka Publ.,

1971. 128 p.

[5] Grodzovskiy G.L., Ivanov Yu.N., Tokarev V.V. Mekhanika kosmicheskogo poleta.

Metody optimizatsii [The space-flight mechanics. Optimization methods]. Moscow,

Nauka Publ., 1975. 702 p.

[6] Bazilevskiy A.T., Grigor’ev E.I., Ermakov S.N. Proektirovanie spuskaemykh

avtomaticheskikh kosmicheskikh apparatov [Сonstructional design of landing

unmanned space vehicles]. Moscow, Mashinostronie Publ., 1985. 264 p.

[7] Interaction dynamics of reshaped mechanical landing gear of re-entering body with

the landing surface.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.,

Spetsvyp. “Krupnogabaritnye transformiruemye kosmicheskie konstruktsii i materialy

dlya perspektivnykh raketno-kosmicheskikh sistem”

[Herald of the Bauman Moscow

State Tech. Univ., Mech. Eng., Spec. Issue “Large-sized reshaped space structures

and materials for advanced rocket-and-space systems”], 2011, pp. 69–79 (in Russ.).

[8] Koryanov V.V. Dynamic study of lander moving with an impact landing on the planet

surface.

Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet”

[All-Russ. Sc.-

Techn. Journ. “Flight”], 2010, no. 1, pp. 42–49 (in Russ.).

[9] Pichkhadze K.M., Vorontsov V.A., Zashchirinskiy A.M., Ponomarev V.A.

Deorbit system and emergency rescue based on the inflatable braking device.

Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet”

[All-Russ. Sc.-Techn.

Journ. “Flight”], 2003, no. 8, pp. 9–13 (in Russ.).

[10] Kazakovtsev V.P., Koryanov V.V. Research technique of the attitude dynamics of

a landing unmanned space vehicle with an inflatable braking device.

Vestn. Mosk.

Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.

[Herald of the Bauman Moscow

State Tech. Univ., Mech. Eng.], 2012, no. 3 (88), pp. 39–46.

The original manuscript was received by the editors on 22.05.2013

Contributors

Kazakovtsev V.P. —

D.Sc.

(Eng.), Professor of Engineering, Department of Dynamics and

Flight Control of Rockets and Spacecrafts, Bauman Moscow State Technical University,

author of over 120 research publications in the field of ballistics and flight dynamics of

spacecrafts and descent vehicles.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation.

34 ISSN 0236-3941. HERALD of the BMSTU. Series “Mechanical Engineering”. 2014. No. 1