Построение регулярных адаптивных сеток в пространственных областях с криволинейными границами - page 4

Теперь можно привести конечно-разностное операторное предста-
вление исходной задачи
A ~U
i,j
= 0
:
(
AU
i,j,m
)
x
=
λ
x
F
i
+1/2
,j,m
(
U
x,i
+1
,j,m
U
x,i,j,m
)
F
i
1/2
,j,m
(
U
x,i,j.m
U
x,i
1
,j,m
)
h
2
x
+
+
(1
σ
)
2
(
F
i,j
+1/2
,m
(
U
x,i,j
+1
,m
U
x,i,j,m
)
F
i,j
1/2
,m
(
U
x,i,j,m
U
x,i,j
1
,m
)
h
2
y
)
+
+
(1
σ
)
2
F
i,j,m
+1/2
(
U
x,i,j,m
+1
U
x,i,j,m
)
F
i,j,m
1/2
(
U
x,i,j,m
U
x,i,j,m
1
)
h
2
z
+
+
(1 +
σ
)
2
F
i
+1
,j,m
(
U
y,i
+1
,j
+1
,m
U
y,i
+1
,j
1
,m
)
F
i
1
,j,m
(
U
y,i
1
,j
+1
,m
U
y,i
1
,j
1
,m
)
4
h
x
h
y
+
+
(1 +
σ
)
2
F
i
+1
,j,m
(
U
z,i
+1
,j,m
+1
U
z,i
+1
,j,m
1
)
F
i
1
,j,m
(
U
z,i
1
,j,m
+1
U
z,i
1
,j,m
1
)
4
h
x
h
z
;
(
AU
i,j,m
)
y
=
λ
y
F
i,j
+1/2
,m
(
U
y,i,j
+1
,m
U
y,i,j,m
)
F
i,j
1/2
,m
(
U
y,i,j,m
U
y,i,j
1
,m
)
h
2
y
+
+
(1
σ
)
2
F
i
+1/2
,j,m
(
U
y,i
+1
,j,m
U
y,i,j,m
)
F
i
1/2
,j,m
(
U
y,i,j,m
U
y,i
1
,j,m
)
h
2
x
+
+
(1
σ
)
2
F
i,j,m
+1/2
(
U
y,i,j,m
+1
U
y,i,j,m
)
F
i,j,m
1/2
(
U
y,i,j,m
U
y,i,j,m
1
)
h
2
z
+
+
(1 +
σ
)
2
F
i,j
+1
,m
(
U
x,i
+1
,j
+1
,m
U
x,i
1
,j
+1
,m
)
F
i,j
1
,m
(
U
x,i
+1
,j
1
,m
U
x,i
1
,j
1
,m
)
4
h
y
h
x
+
+
(1 +
σ
)
2
F
i,j
+1
,m
(
U
z,i,j
+1
,m
+1
U
z,i,j
+1
,m
1
)
F
i,j
1
,m
(
U
z,i,j
1
,m
+1
U
z,i,j
1
,m
1
)
4
h
y
h
z
;
(
AU
i,j,m
)
z
=
λ
z
F
i,j,m
+1/2
(
U
z,i,j,m
+1
U
z,i,j,m
)
F
i,j,m
1/2
(
U
z,i,j,m
U
z,i,j,m
1
)
h
2
z
+
+
(1
σ
)
2
F
i
+1/2
,j,m
(
U
z,i
+1
,j,m
U
z,i,j,m
)
F
i
1/2
,j,m
(
U
z,i,j.m
U
z,i
1
,j,m
)
h
2
x
+
+
(1
σ
)
2
(
F
i,j
+1/2
,m
(
U
z,i,j
+1
,m
U
z,i,j,m
)
F
i,j
1/2
,m
(
U
z,i,j,m
U
z,i,j
1
,m
)
h
2
y
)
+
+
(1 +
σ
)
2
F
i,j,m
+1
(
U
x,i
+1
,j,m
+1
U
x,i
1
,j,m
+1
)
F
i,j,m
1
(
U
x,i
+1
,j,m
1
U
x,i
1
,j,m
1
)
4
h
z
h
x
+
+
(1 +
σ
)
2
F
i,j,m
+1
(
U
y,i,j
+1
,m
+1
U
y,i,j
1
,m
+1
)
F
i,j,m
1
(
U
y,i,j
+1
,m
1
U
y,i,j
1
,m
1
)
4
h
z
h
y
,
где
i
= 2
, . . . , L
1
;
j
= 2
, . . . , M
1
;
m
= 2
, . . . , N
1
.
Для решения задачи
A ~U
= 0
используем метод установления [3].
При этом шаг по “времени”
τ
найдем с помощью итерационного
метода вариационного типа. Для этого определим вектор невязок
~R
= (
R
x
, R
y
, R
z
)
:
R
k
x,i,j,m
= (
AU
i,j,m
)
k
x
b
k
x,i,j,m
,
R
k
y,i,j,m
= (
AU
i,j,m
)
k
y
b
k
y,i,j,m
, R
k
z,i,j,m
= (
AU
i,j,m
)
k
z
b
k
z,i,j,m
,
~b
k
i,j,m
=
b
k
x,i,j,m
, b
k
y,i,j,m
, b
k
z,i,j,m
=
{
0
,
0
,
0
}
,
i
= 2
, . . . , L
1;
j
= 2
, . . . , M
1;
m
= 2
, . . . , N
1
,
где
k
— номер итерации.
6 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2008. № 1
1,2,3 5,6,7,8,9
Powered by FlippingBook