Previous Page  7 / 9 Next Page
Information
Show Menu
Previous Page 7 / 9 Next Page
Page Background

Автомодельное решение задачи теплопереноса в изотропном полупространстве…

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 5

95

A SIMILARITY SOLUTION TO THE HEAT TRANSFER PROBLEM

FOR AN ISOTROPIC HALF-SPACE FEATURING A FILM-COATED

MOVING BOUNDARY

A.V. Attetkov

fn2@bmstu.ru

P.A. Vlasov

fn12@bmstu.ru

I.K. Volkov

fn12@bmstu.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

The study considers the problem of determining a tem-

perature field in an isotropic half-space the boundary of

which moves according to a given law and features a film

coating. We investigated unsteady heat transfer in a sys-

tem consisting of a solid, a coating and a gas, with both

the heat transfer coefficient and ambient temperature

being time-dependent. We determine sufficient condi-

tions meeting which ensures the possibility of self-similar

heat transfer process taking place in the system under

consideration. We qualitatively investigated physical

properties of the self-similar process under study. We

provide a theoretical validation of implementing a ther-

mostatting mode in the moving boundary of the object

investigated

Isotropic half-space with a moving

boundary, thermally thin coating,

unsteady heat transfer, temperature

field, similarity solution

REFERENCES

[1] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Clarendon Press, 1986. 510 p. (Russ.

ed.: Teploprovodnost' tverdykh tel. Moscow, Nauka Publ., 1964. 488 p.).

[2] Lykov A.V. Teoriya teploprovodnosti [Heat conduction theory]. Moscow, Vysshaya shkola

Publ., 1967. 600 p.

[3] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical

methods in theory of heat conduction in solids]. Moscow, Vysshaya shkola Publ., 2001. 550 p.

[4] Pudovkin M.A., Volkov I.K. Kraevye zadachi matematicheskoy teorii teploprovodnosti v

prilozhenii k raschetam temperaturnykh poley v neftyanykh plastakh pri zavodnenii [Bounda-

ry problems of heat conduction mathematical theory in application to temperature field calcu-

lation in oil reservoir in condition of waterflooding]. Kazan', Izdatelstvo Kazanskogo universi-

teta, 1978. 188 p.

[5] Kartashov E.M., Kudinov V.A. Analiticheskaya teoriya teploprovodnosti i prikladnoy

termouprugosti [Analytical theory of thermal conductivity and applied thermal elasticity].

Moscow, URSS Publ., 2012. 653 p.

[6] Formalev V.F. Teploprovodnost' anizotropnykh tel. Analiticheskie metody resheniya zadach

[Thermal conductivity of anisotropic bodies. Analytical methods of problem solving]. Moscow,

Fizmatlit Publ., 2014. 312 p.