Автомодельное решение задачи теплопереноса в изотропном полупространстве…
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 5
95
A SIMILARITY SOLUTION TO THE HEAT TRANSFER PROBLEM
FOR AN ISOTROPIC HALF-SPACE FEATURING A FILM-COATED
MOVING BOUNDARY
A.V. Attetkov
fn2@bmstu.ruP.A. Vlasov
fn12@bmstu.ruI.K. Volkov
fn12@bmstu.ruBauman Moscow State Technical University, Moscow, Russian Federation
Abstract
Keywords
The study considers the problem of determining a tem-
perature field in an isotropic half-space the boundary of
which moves according to a given law and features a film
coating. We investigated unsteady heat transfer in a sys-
tem consisting of a solid, a coating and a gas, with both
the heat transfer coefficient and ambient temperature
being time-dependent. We determine sufficient condi-
tions meeting which ensures the possibility of self-similar
heat transfer process taking place in the system under
consideration. We qualitatively investigated physical
properties of the self-similar process under study. We
provide a theoretical validation of implementing a ther-
mostatting mode in the moving boundary of the object
investigated
Isotropic half-space with a moving
boundary, thermally thin coating,
unsteady heat transfer, temperature
field, similarity solution
REFERENCES
[1] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Clarendon Press, 1986. 510 p. (Russ.
ed.: Teploprovodnost' tverdykh tel. Moscow, Nauka Publ., 1964. 488 p.).
[2] Lykov A.V. Teoriya teploprovodnosti [Heat conduction theory]. Moscow, Vysshaya shkola
Publ., 1967. 600 p.
[3] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical
methods in theory of heat conduction in solids]. Moscow, Vysshaya shkola Publ., 2001. 550 p.
[4] Pudovkin M.A., Volkov I.K. Kraevye zadachi matematicheskoy teorii teploprovodnosti v
prilozhenii k raschetam temperaturnykh poley v neftyanykh plastakh pri zavodnenii [Bounda-
ry problems of heat conduction mathematical theory in application to temperature field calcu-
lation in oil reservoir in condition of waterflooding]. Kazan', Izdatelstvo Kazanskogo universi-
teta, 1978. 188 p.
[5] Kartashov E.M., Kudinov V.A. Analiticheskaya teoriya teploprovodnosti i prikladnoy
termouprugosti [Analytical theory of thermal conductivity and applied thermal elasticity].
Moscow, URSS Publ., 2012. 653 p.
[6] Formalev V.F. Teploprovodnost' anizotropnykh tel. Analiticheskie metody resheniya zadach
[Thermal conductivity of anisotropic bodies. Analytical methods of problem solving]. Moscow,
Fizmatlit Publ., 2014. 312 p.