Усовершенствование технологии нанесения теплозащитного покрытия…
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 5
135
Просьба ссылаться на эту статью следующим образом:
Захаров Б.М., Буреев И.А. Усовершенствование технологии нанесения теплозащитного
покрытия на лопатки турбины // Вестник МГТУ им. Н.Э. Баумана. Сер. Машинострое-
ние. 2016. № 5. C. 128–136. DOI: 10.18698/0236-3941-2016-5-128-136
IMPROVED TECHNOLOGY FOR HEAT-SHIELDING COATING
APPLICATION ONTO TURBINE BLADES
B.M. Zakharov
1
mt13@bmstu.ruI.A. Bureev
2
bva.35@rambler.ru1
Bauman Moscow State Technical University, Moscow, Russian Federation
2
State Science Institution National Research Institute of Veterinary Virology and Microbiology
of Russian Academy of Agricultural Sciences, Pokrov, Vladimir Region, Russian Federation
Abstract
Keywords
The purpose of this research was to review melt crystalliza-
tion in a free and limited volume. We analyzed the for-
mation of heat-shielding coatings obtained by plasma and
electron-beam method. Previous research provides a heat-
shielding coating with the columnar structure obtained
using the method of suspensions, representing nano-sized
powders in liquid media. When spraying, the suspense
evaporates and the coating is formed from the vapor phase
in the form of a columnar structure. This structure is ob-
tained by an expensive electron-beam method and it has a
higher heat resistance than plasma lamellar structure ob-
tained from powders. The method is cost-effective; howe-
ver, its performance is poor. We proposed an effective
technique of applying coating with a columnar structure in
the chamber with reduced pressure
Heat-shielding coatings, electron-
beam physical vapour deposition
(EB-PVD), ASPS-process
REFERENCES
[1] Movchan B.A., Tutov N.D. Elektronic-beam evaporation and deposition of materials from
vapour phase in the vacuum.
Izv. Kurskogo GTU
[Proceedings of the Kursk State Technical
University], 2009, no. 1(26), pp. 12–18 (in Russ.).
[2] Tang Z., Hartell P., Masindo G., Yaroslavski I., Burgess A. Duration and reliability of axial
suspension plasma spray process.
ITSC
, 2010.
[3] Tang Z., Burgess A., Kesler O., White B., Ben-Oved N. Manufacturing solid oxide fuel cells
with an axial-injection plasma spray system.
TSC
, 2007, pp. 87–90.
[4] Kitamura J., Ibe H., Yuasa F., Tang Z., Burgess A. Structural, mechanical and erosion pro-
perties of plasma sprayed yttrium oxide coatings by axial injection of fine powder slurries
for semiconductor and flat-panel-display applications.
ITSC
, 2009.
[5] Bureev I.A., Bureev V.I. Generator dlya polucheniya vysokodispersnykh aerozoley [Gene-
rator producing superfine aerosols]. Patent RF, no. 2365428, 2009.