Previous Page  8 / 9 Next Page
Information
Show Menu
Previous Page 8 / 9 Next Page
Page Background

Усовершенствование технологии нанесения теплозащитного покрытия…

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 5

135

Просьба ссылаться на эту статью следующим образом:

Захаров Б.М., Буреев И.А. Усовершенствование технологии нанесения теплозащитного

покрытия на лопатки турбины // Вестник МГТУ им. Н.Э. Баумана. Сер. Машинострое-

ние. 2016. № 5. C. 128–136. DOI: 10.18698/0236-3941-2016-5-128-136

IMPROVED TECHNOLOGY FOR HEAT-SHIELDING COATING

APPLICATION ONTO TURBINE BLADES

B.M. Zakharov

1

mt13@bmstu.ru

I.A. Bureev

2

bva.35@rambler.ru

1

Bauman Moscow State Technical University, Moscow, Russian Federation

2

State Science Institution National Research Institute of Veterinary Virology and Microbiology

of Russian Academy of Agricultural Sciences, Pokrov, Vladimir Region, Russian Federation

Abstract

Keywords

The purpose of this research was to review melt crystalliza-

tion in a free and limited volume. We analyzed the for-

mation of heat-shielding coatings obtained by plasma and

electron-beam method. Previous research provides a heat-

shielding coating with the columnar structure obtained

using the method of suspensions, representing nano-sized

powders in liquid media. When spraying, the suspense

evaporates and the coating is formed from the vapor phase

in the form of a columnar structure. This structure is ob-

tained by an expensive electron-beam method and it has a

higher heat resistance than plasma lamellar structure ob-

tained from powders. The method is cost-effective; howe-

ver, its performance is poor. We proposed an effective

technique of applying coating with a columnar structure in

the chamber with reduced pressure

Heat-shielding coatings, electron-

beam physical vapour deposition

(EB-PVD), ASPS-process

REFERENCES

[1] Movchan B.A., Tutov N.D. Elektronic-beam evaporation and deposition of materials from

vapour phase in the vacuum.

Izv. Kurskogo GTU

[Proceedings of the Kursk State Technical

University], 2009, no. 1(26), pp. 12–18 (in Russ.).

[2] Tang Z., Hartell P., Masindo G., Yaroslavski I., Burgess A. Duration and reliability of axial

suspension plasma spray process.

ITSC

, 2010.

[3] Tang Z., Burgess A., Kesler O., White B., Ben-Oved N. Manufacturing solid oxide fuel cells

with an axial-injection plasma spray system.

TSC

, 2007, pp. 87–90.

[4] Kitamura J., Ibe H., Yuasa F., Tang Z., Burgess A. Structural, mechanical and erosion pro-

perties of plasma sprayed yttrium oxide coatings by axial injection of fine powder slurries

for semiconductor and flat-panel-display applications.

ITSC

, 2009.

[5] Bureev I.A., Bureev V.I. Generator dlya polucheniya vysokodispersnykh aerozoley [Gene-

rator producing superfine aerosols]. Patent RF, no. 2365428, 2009.