Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

REFERENCES

[1] McInnes C.R. Solar Sailing: Technology, Dynamics and Mission Applications.

Springer Science & Business Media, 2004. 332 p.

[2] Egorov V.A., ed. by Polyakhova E.N. Kosmicheskiy polet s solnechnym parusom:

problemy i perspektivy [Space Flight with a Solar Sail: Problems and Prospects].

Moscow, Knizhnyy dom Librokom Publ., 2011. 320 p.

[3] Forward R. Grey solar sails. American Institute of Aeronautics and Astronautics,

1989.

[4] Raykunov G.G., Komkov V.A., Mel’nikov V.M., Kharlov B.N. Tsentrobezhnye

beskarkasnye krupnogabaritnye kosmicheskie konstruktsii [Centrifugal Frameless

Large-Sized Space Structures]. Moscow, Fizmatlit Publ., 2009. 448 p.

[5] Zimin V.N., Nerovnyy N.A. Analysis of the deformed shape of a heliogyro solar sail

blade taking into account stress-dependent reflectivity of the material.

Izv. Vyssh.

Uchebn. Zaved., Mashinostr.

[Proc. of Higher Educational Institutions. Маchine

Building], 2015, no. 1 (658), pp. 11–16 (in Russ.).

DOI: 10.18698/0536-1044-2015-1-11-17

[6] Spencer H., Carroll K.A. Real Solar Sails are Not Ideal, and Yes It Matters. Advances

in Solar Sailing, Berlin Heidelberg, Springer, 2014, pp. 921–940.

[7] Rios-Reyes L. Solar Sails: Modeling, Estimation, and Trajectory Control. University

of Michigan, 2006. 148 p.

[8] Kislov N. Variable Reflectance/Transmittance Coatings for Solar Sail Altitude

Control and Three Axis Stabilization.

AIP

, 2004, vol. 699, pp. 103–111.

[9] Trofimov S.P. Uvod malykh kosmicheskikh apparatov s nizkikh okolozemnykh orbit

[Deorbit of Small Spacecrafts from Low-Earth Orbit]. Moscow, Institut prikladnoy

matematiki im. M.V. Keldysha RAN, 2015. 125 p.

[10] Trofimov S.P. Dinamicheski invariantnoe masshtabirovanie massogabaritnykh

parametrov karkasnykh parusnykh sistem [Dynamically Invariant Scaling of the

Mass and Size Parameters of Framed Sail Systems]. Moscow, Preprint no. 31, IPM

im. M.V. Keldysha Publ., 2015. 16 p.

[11] Sazonov Vas.V., Sazonov V.V. Calculation of resultant vector and principal moment

of light pressure forces acting upon the spacecraft with a solar sail.

Cosmic Research

,

2011, vol. 49, no. 1, pp. 56–64.

[12] Jing H., Shengping G., Junfeng L. A curved surface solar radiation pressure force

model for solar sail deformation.

Science China Physics, Mechanics and Astronomy

,

2012, vol. 5, no. 1, pp. 141–155.

[13] Jing H.E., Shegping G., Junfeng L., Yufei L. The Solar Radiation Pressure Force

Models for a General Sail Surface Shape. ed. Macdonald M.

Advances in Solar

Sailing

. Springer Berlin Heidelberg, 2014, pp. 469–488.

[14] Nerovnyy N.A., Determination of the Radiation Pressure Force Acting on a Solar

Sail Taking into Account Stress-Dependent Optical Parameters of Sail Material.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.

[Herald of the Bauman

Moscow State Tech. Univ., Mech. Eng.], 2014, no. 3 (96), pp. 61–78 (in Russ.).

[15] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T. 1. Tenzornyy analiz [Continuum

Mechanics. Vol. 1. Calculus of Tensors]. Moscow, MGTU im. N.E. Baumana Publ.,

2011. 463 p.

[16] Borovin G.K., Zakhvatkin M.V., Stepan’yants V.A., Tuchin A.G. Determination

and prediction of orbital parameters of the “Radioastron” mission.

Mathematica

Montisnigri

, 2014, vol. XXX, pp. 76–98.

[17] Shmatov S.I., Mordvinkin A.S. The Combined Compensating Sistem of the

Disturbing Torque Induced by Solar Pressure for Geostationary Satellite.

Vestnik

NPO im. S.A. Lavochkina

, 2013, no. 3 (19), pp. 30–36 (in Russ.).

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение” 2016. № 1 27