[5] Krasnov I.F., Koshevoy V.N., Danilov A.N. Prikladnaya aerodinamika [Applied
aerodynamics]. Moscow, Vyssh. shk. Publ., 1974. 732 p.
[6] Zvegintsev V.I. Gazodinamicheskie ustanovki kratkovremennogo deystviya. Ch. 1.
Ustanovki dlya nauchnykh issledovaniy [Short-term gas-dynamic devices. Part 1].
Novosibirsk, Parallel’ Publ., 2014. 551 p.
[7] Kotov M.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Experimental research
of the model flow-over in hypersonic aerodynamic shock tube. 5-ya Vseross.
shk.-seminar “Aerofizika i fizicheskaya mekhanika klassicheskikh i kvantovykh
sistem”.
Sb. Nauch. Tr.
[5th All-Russian School-Seminar “Aerophysics and Physical
Mechanics of Classical and Quantum Systems”: Proc. Sci. Int.]. Moscow, IPMekh
RAN, 2012, pp. 110–115 (in Russ.).
[8] Kotov M.A., Kuzenov V.V. Main trends in research of hypersonic flows in
aerodynamic shock tubes.
Izobretatel’stvo
, 2013, vol. XIII, no. 9, pp. 11–25 (in
Russ.).
[9] Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T.
Experimental Investigation of an Aerodynamic Flow of Geometrical Models in
Hypersonic Aerodynamic Shock Tube. AIAA 2013–2931.
AIAA Wind Tunnel and
Flight Testing Aero II
. 15 p.
[10] Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Multiple
Flow Regimes in a Single Hypersonic Shock Tube Experiment. AIAA 2014–2657.
AIAA Aerodynamic Measurement Technology and Ground Testing Conference
. 22 p.
[11] Gruber M.R., Baurle R.A., Mathur T., Hsu K.-Y. Fundamental Studies of Cavity-
Based Flameholder Concepts for Supersonic Combustors.
J. of Propulsion and
Power
, vol. 17, no. 1, 2001, pp. 146–153.
[12] Borovoy V. Ya. Techenie gaza i teploobmen v zonakh vzaimodeystviya udarnykh
voln s pogranichnym sloem [Gas flow and heat exchange in interaction areas of
shock waves with boundary layer]. Moscow, Mashinostroenie Publ., 1983. 141 p.
[13] Barth T.J., Jespersen D.C. The design and application of upwind schemes on
unstructured meshes.
AIAA Paper
, no. 1989–0366, June 1989.
[14] Liou M.S., Steffen C.J.Jr. A New Flux Splitting Scheme.
J. of Computational Physics
,
1993, vol. 107, pp. 23–39.
[15] Venkatakrishnan V. Convergence to Steady State Solutions of the Euler Equations
on Unstructured Grids with Limiters.
J. of Computational Physics
, 1995, vol. 118,
pp. 120–130.
[16] Michalak C., Ollivier-Gooch C. Accuracy preserving limiter for the high-order
accurate solution of the Euler equations.
J. of Computational Physics
, 2012, vol. 228,
pp. 8693–9711.
[17] Haselbacher A., Blazek J. Accurate and efficient discretization of Navier – Stokes
equations on mixed grids.
AIAA J.
, 2000, vol. 38, no. 11, pp. 2094–2102.
[18] Weiss J.M., Maruszewski J.P., Smith W.A. Implicit solution of preconditioned
Navier – Stokes equations using algebraic multigrid.
AIAA J.
, 1999, vol. 37, no. 1,
pp. 29–36.
[19] Shu C.-W., Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-
Capturing Schemes II.
J. of Computational Physics
, 1989, vol. 83, pp. 32–78.
[20] Geuzaine C., Remacle J.-F. Gmsh: a three-dimensional finite element mesh generator
with built-in pre- and post-processing facilities.
International J. for Numerical
Methods in Engineering
, 2009, vol. 79, no. 11, pp. 1309–1331.
Статья поступила в редакцию 18.08.2014
Котов Михаил Алтаевич — научный сотрудник лаборатории “Радиационная газовая
динамика” ИПМех РАН. Автор 18 научных работ в области аэротермофизики.
Институт проблем механики имени А.Ю. Ишлинского РАН, Российская Федерация,
119526, Москва, пр-т Вернадского, д. 101, корп. 1.
20 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2015. № 1