Background Image
Previous Page  17 / 18 Next Page
Information
Show Menu
Previous Page 17 / 18 Next Page
Page Background

[5] Krasnov I.F., Koshevoy V.N., Danilov A.N. Prikladnaya aerodinamika [Applied

aerodynamics]. Moscow, Vyssh. shk. Publ., 1974. 732 p.

[6] Zvegintsev V.I. Gazodinamicheskie ustanovki kratkovremennogo deystviya. Ch. 1.

Ustanovki dlya nauchnykh issledovaniy [Short-term gas-dynamic devices. Part 1].

Novosibirsk, Parallel’ Publ., 2014. 551 p.

[7] Kotov M.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Experimental research

of the model flow-over in hypersonic aerodynamic shock tube. 5-ya Vseross.

shk.-seminar “Aerofizika i fizicheskaya mekhanika klassicheskikh i kvantovykh

sistem”.

Sb. Nauch. Tr.

[5th All-Russian School-Seminar “Aerophysics and Physical

Mechanics of Classical and Quantum Systems”: Proc. Sci. Int.]. Moscow, IPMekh

RAN, 2012, pp. 110–115 (in Russ.).

[8] Kotov M.A., Kuzenov V.V. Main trends in research of hypersonic flows in

aerodynamic shock tubes.

Izobretatel’stvo

, 2013, vol. XIII, no. 9, pp. 11–25 (in

Russ.).

[9] Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T.

Experimental Investigation of an Aerodynamic Flow of Geometrical Models in

Hypersonic Aerodynamic Shock Tube. AIAA 2013–2931.

AIAA Wind Tunnel and

Flight Testing Aero II

. 15 p.

[10] Kotov M.A., Kryukov I.A., Ruleva L.B., Solodovnikov S.I., Surzhikov S.T. Multiple

Flow Regimes in a Single Hypersonic Shock Tube Experiment. AIAA 2014–2657.

AIAA Aerodynamic Measurement Technology and Ground Testing Conference

. 22 p.

[11] Gruber M.R., Baurle R.A., Mathur T., Hsu K.-Y. Fundamental Studies of Cavity-

Based Flameholder Concepts for Supersonic Combustors.

J. of Propulsion and

Power

, vol. 17, no. 1, 2001, pp. 146–153.

[12] Borovoy V. Ya. Techenie gaza i teploobmen v zonakh vzaimodeystviya udarnykh

voln s pogranichnym sloem [Gas flow and heat exchange in interaction areas of

shock waves with boundary layer]. Moscow, Mashinostroenie Publ., 1983. 141 p.

[13] Barth T.J., Jespersen D.C. The design and application of upwind schemes on

unstructured meshes.

AIAA Paper

, no. 1989–0366, June 1989.

[14] Liou M.S., Steffen C.J.Jr. A New Flux Splitting Scheme.

J. of Computational Physics

,

1993, vol. 107, pp. 23–39.

[15] Venkatakrishnan V. Convergence to Steady State Solutions of the Euler Equations

on Unstructured Grids with Limiters.

J. of Computational Physics

, 1995, vol. 118,

pp. 120–130.

[16] Michalak C., Ollivier-Gooch C. Accuracy preserving limiter for the high-order

accurate solution of the Euler equations.

J. of Computational Physics

, 2012, vol. 228,

pp. 8693–9711.

[17] Haselbacher A., Blazek J. Accurate and efficient discretization of Navier – Stokes

equations on mixed grids.

AIAA J.

, 2000, vol. 38, no. 11, pp. 2094–2102.

[18] Weiss J.M., Maruszewski J.P., Smith W.A. Implicit solution of preconditioned

Navier – Stokes equations using algebraic multigrid.

AIAA J.

, 1999, vol. 37, no. 1,

pp. 29–36.

[19] Shu C.-W., Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-

Capturing Schemes II.

J. of Computational Physics

, 1989, vol. 83, pp. 32–78.

[20] Geuzaine C., Remacle J.-F. Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities.

International J. for Numerical

Methods in Engineering

, 2009, vol. 79, no. 11, pp. 1309–1331.

Статья поступила в редакцию 18.08.2014

Котов Михаил Алтаевич — научный сотрудник лаборатории “Радиационная газовая

динамика” ИПМех РАН. Автор 18 научных работ в области аэротермофизики.

Институт проблем механики имени А.Ю. Ишлинского РАН, Российская Федерация,

119526, Москва, пр-т Вернадского, д. 101, корп. 1.

20 ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2015. № 1