Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

М.Ю. Иванов, А.Е. Новиков, Г.Ф. Реш

64

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 2

Abstract

Keywords

In solving problems of actuator line synchronization in

technical systems, hydraulic techniques are used. These

methods involve the use of flow stabilizers maintaining

the constant velocity of actuators, when exposed to

various dynamic loads. The study examines the problems

associated with the design, special features of designing

and numerical simulation of the flow stabilizer, ensuring

the setpoint of the volume flow rate of the working fluid

over a wide differential pressure range, which is deter-

mined by the load spread to the actuators. The paper

shows the results of computer simulation of physical

processes in the flow stabilizer. We used mathematical

models to experimentally determine the values of hydro-

dynamic force, affecting the flow accuracy. Finally, we

obtained an analytical expression for the hydrodynamic

force axial component coefficient and built a static flow

stabilizer characteristic

Line synchronizing system, flow sta-

bilizer, spool-and-sleeve, hydrody-

namic force, mathematical modeling,

universal testbed for flow stabilizer

testing, static characteristic

REFERENCES

[1] Litvin-Sedoy M.Z. Gidravlicheskiy privod v sistemakh avtomatiki [Hydraulic drive in auto-

mation system]. Moscow, Mashgiz Publ., 1956. 312 p.

[2] Krassov I.M. Gidravlicheskie elementy v sistemakh upravleniya [Hydraulic elements in

operating systems]. Moscow, Mashinostroenie Publ., 1967. 256 p.

[3] Bashta T.M. Mashinostroitel'naya gidravlika [Machine-building hydraulics]. Moscow,

Mashinostroenie Publ., 1971. 672 p.

[4] Glikman B.F. Avtomaticheskoe regulirovanie zhidkostnykh raketnykh dvigateley [Auto-

matic regulation of liquid rocket engines]. Moscow, Mashinostroenie, Publ., 1974. 396 p.

[5] Popov D.N. Mekhanika gidro- i pnevmoprivodov [Full hydraulic and pneumatic drive].

Moscow, Bauman MSTU Publ., 2002. 320 p.

[6] Kopkov G.A., Kuchin A.P., Novikov A.E., Ivanov

M.Yu

., Resh G.F., Antonov D.S. Stabili-

zatory raskhoda dlya sinkhronizatsii peremeshcheniya ispolnitel'nykh organov sistem le-

tatel'nykh apparatov [Consumption stabilizer for movement synchronization of aircraft actu-

ating devices systems].

Nauchno-tekhnicheskiy yubileynyy sbornik AO “KB khimavtomatiki”

T.1

[Sci.-tech. jubilee issue of AO “KB khimavtomatiki”. Vol. 1]. Voronezh, 2012, pp. 219–223.

[7] Shevyakov A.A., Kalnin V.M., Naumenkova N.V., Dyatlov V.G. Teoriya avtomaticheskogo

upravleniya raketnymi dvigatelyami [Automatic control theory of rocket engines]. Moscow,

Mashinostroenie Pub., 1978. 288 p.

[8] Terekhov N.T. Sozdanie i sovershenstvovanie agregatov regulirovaniya [Сraetion and re-

finement of regulator assemblies].

Nauchno-tekhnicheskiy yubileynyy sbornik AO “KB khim-

avtomatiki”

[Sci.-tech. jubilee issue of AO “KB khimavtomatiki”]. Voronezh, 2001,

pp. 397–409.

[9] Kashchuk A.S., Terekhov N.T. Regulyator raskhoda [Flow control regulator]. Patent

2142156 RF. Publ. 27.11.1999.

[10] Belyaev E.N., Chvanov V.K., Chervakov V.V. Matematicheskoe modelirovanie rabochego

protsessa zhidkostnykh raketnykh dvigateley [Matematical simulation of liquid rocket engine

working process]. Moscow, MAI Publ., 1999. 228 p.