М.Ю. Иванов, А.Е. Новиков, Г.Ф. Реш
64
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 2
Abstract
Keywords
In solving problems of actuator line synchronization in
technical systems, hydraulic techniques are used. These
methods involve the use of flow stabilizers maintaining
the constant velocity of actuators, when exposed to
various dynamic loads. The study examines the problems
associated with the design, special features of designing
and numerical simulation of the flow stabilizer, ensuring
the setpoint of the volume flow rate of the working fluid
over a wide differential pressure range, which is deter-
mined by the load spread to the actuators. The paper
shows the results of computer simulation of physical
processes in the flow stabilizer. We used mathematical
models to experimentally determine the values of hydro-
dynamic force, affecting the flow accuracy. Finally, we
obtained an analytical expression for the hydrodynamic
force axial component coefficient and built a static flow
stabilizer characteristic
Line synchronizing system, flow sta-
bilizer, spool-and-sleeve, hydrody-
namic force, mathematical modeling,
universal testbed for flow stabilizer
testing, static characteristic
REFERENCES
[1] Litvin-Sedoy M.Z. Gidravlicheskiy privod v sistemakh avtomatiki [Hydraulic drive in auto-
mation system]. Moscow, Mashgiz Publ., 1956. 312 p.
[2] Krassov I.M. Gidravlicheskie elementy v sistemakh upravleniya [Hydraulic elements in
operating systems]. Moscow, Mashinostroenie Publ., 1967. 256 p.
[3] Bashta T.M. Mashinostroitel'naya gidravlika [Machine-building hydraulics]. Moscow,
Mashinostroenie Publ., 1971. 672 p.
[4] Glikman B.F. Avtomaticheskoe regulirovanie zhidkostnykh raketnykh dvigateley [Auto-
matic regulation of liquid rocket engines]. Moscow, Mashinostroenie, Publ., 1974. 396 p.
[5] Popov D.N. Mekhanika gidro- i pnevmoprivodov [Full hydraulic and pneumatic drive].
Moscow, Bauman MSTU Publ., 2002. 320 p.
[6] Kopkov G.A., Kuchin A.P., Novikov A.E., Ivanov
M.Yu., Resh G.F., Antonov D.S. Stabili-
zatory raskhoda dlya sinkhronizatsii peremeshcheniya ispolnitel'nykh organov sistem le-
tatel'nykh apparatov [Consumption stabilizer for movement synchronization of aircraft actu-
ating devices systems].
Nauchno-tekhnicheskiy yubileynyy sbornik AO “KB khimavtomatiki”
T.1
[Sci.-tech. jubilee issue of AO “KB khimavtomatiki”. Vol. 1]. Voronezh, 2012, pp. 219–223.
[7] Shevyakov A.A., Kalnin V.M., Naumenkova N.V., Dyatlov V.G. Teoriya avtomaticheskogo
upravleniya raketnymi dvigatelyami [Automatic control theory of rocket engines]. Moscow,
Mashinostroenie Pub., 1978. 288 p.
[8] Terekhov N.T. Sozdanie i sovershenstvovanie agregatov regulirovaniya [Сraetion and re-
finement of regulator assemblies].
Nauchno-tekhnicheskiy yubileynyy sbornik AO “KB khim-
avtomatiki”
[Sci.-tech. jubilee issue of AO “KB khimavtomatiki”]. Voronezh, 2001,
pp. 397–409.
[9] Kashchuk A.S., Terekhov N.T. Regulyator raskhoda [Flow control regulator]. Patent
2142156 RF. Publ. 27.11.1999.
[10] Belyaev E.N., Chvanov V.K., Chervakov V.V. Matematicheskoe modelirovanie rabochego
protsessa zhidkostnykh raketnykh dvigateley [Matematical simulation of liquid rocket engine
working process]. Moscow, MAI Publ., 1999. 228 p.