|

Computing Contact Forces Between a Deformable Object and Gripper Links of a Manipulator

Authors: Leskov A.G., Seliverstova E.V. Published: 14.06.2018
Published in issue: #3(120)/2018  

DOI: 10.18698/0236-3941-2018-3-58-74

 
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems  
Keywords: grasp, deformable object, simulation, automatic object grasping, contact forces, grasp planning, Schunk WSG50, contact forces

We analysed the methods of computing contact forces between gripper links of a manipulator and a deformable object of manipulation. This problem is important for grasp simulation and planning. We present an original method for determining contact forces between objects, whose surfaces are modelled using point-based discretisation. We provide a solution to the Signorini problem based on the laws of linear elasticity theory and the Amonton --- Coulomb model of friction. To compute the intersections of the object and gripper surfaces, we used an algorithm described in our previous works that takes into account the direction of the gripper link motion relative to the object. Advantages of the method proposed are low computational complexity and ease of implementation. We developed computer software and present experimental results that prove the efficiency of the algorithm

References

[1] Leskov A.G., Illarionov V.V., Kalevatykh I.A., et al. Hardware-software complex for solving the task of automatic capture of the object with manipulators. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2015, no. 1 (in Russ.). DOI: 10.18698/2308-6033-2015-1-1361 Available at: http://engjournal.ru/catalog/prubor/robot/1361.html

[2] Popov V.L. Mekhanika kontaktnogo vzaimodeystviya i fizika treniya [Mechanics of contact interaction and physics of friction]. Moscow, Fizmatlit Publ., 2013. 352 p.

[3] Kikuchi N., Oden J.T. Contact problems in elasticity: a study of variational inequalities and finite element methods. Society for Industrial and Applied Mathematics, 1988. 485 p.

[4] Teschner M., Kimmerle S., Zachmann G., Heidelberger B., et al. Collision detection for deformable objects. Proc. Eurographics, 2004, pp. 119–135.

[5] Terzopoulos D., Platt J.C., Barr A.H. Elastically deformable models. Proc. 14th Special Interest Group on Graphics and Interactive Techniques, 1987, vol. 21, no. 4, pp. 205–214. DOI: 10.1145/37402.37427

[6] Moore M., Wilhelms J. Collision detection and response for computer animation. Proc. 15th Special Interest Group on Graphics and Interactive Techniques, 1988, vol. 22, no. 4, pp. 289–298. DOI: 10.1145/378456.378528

[7] Platt J.C., Barr A.H. Constraint methods for flexible models. Proc. 15th Special Interest Group on Graphics and Interactive Techniques, 1988, vol. 22, no. 4, pp. 279–288. DOI: 10.1145/378456.378524

[8] Baraff D., Witkin A. Dynamic simulation of non-penetrating flexible bodies. Proc. 19th Special Interest Group on Graphics and Interactive Techniques, 1992, vol. 26, no. 2, pp. 303–308. DOI: 10.1145/142920.134084

[9] Alefeld G., Wang Z., Shen Z. Solutions of linear complementarity problems for H-matrices. Reliable Computing, 2004, vol. 10, no. 6, pp. 423–435. DOI: 10.1023/B:REOM.0000047093.79994.8f

[10] Hahn J.K. Realistic animation of rigid bodies. Proc. 15th Special Interest Group on Graphics and Interactive Techniques, 1988, vol. 22, no. 4, pp. 299–308.

[11] Mirtich B., Canny J. Impulse-based simulation of rigid bodies. Proc. 1995 symposium on Interactive 3D graphics, 1995, pp. 181–190. DOI: 10.1145/378456.378530

[12] Gascuel M.-P. An implicit formulation for precise contact modeling between flexible solids. Proc. 20th Special Interest Group on Graphics and Interactive Techniques, 1993, pp. 313–320. DOI: 10.1145/166117.166157

[13] Desbrun M., Gascuel M.-P. Animating soft substances with implicit surfaces. Proc. 22nd Special Interest Group on Graphics and Interactive Techniques, 1995, pp. 287–290. DOI: 10.1145/218380.218456

[14] Pfister H., Zwicker M., Baar J., Gross M. Surfels: surface elements as rendering primitives. Proc. 27th Special Interest Group on Graphics and Interactive Techniques, 2000, pp. 335–342. DOI: 10.1145/344779.344936

[15] Zwicker M., Pauly M., Knoll O., Gross M. Pointshop 3d: An interactive system for point-based surface editing. Proc. 29th Special Interest Group on Graphics and Interactive Techniques, 2002, pp. 322–329. DOI: 10.1145/566570.566584

[16] Zwicker M., Rasanen J., Botsch M., Dachsbacher C., Pauly M. Perspective accurate splatting. Proc. Graphics Interface, 2004, pp. 247–254. Available at: https://dl.acm.org/citation.cfm?id=100608

[17] Guennebaud G., Barthe L., Paulin M. Deferred splatting. Proc. Eurographics, 2004, vol. 23, no. 3, pp. 653–660.

[18] Pauly M., Keiser R., Kobbelt L.P., Gross M. Shape modeling with point-sampled geometry. Proc. 30th Special Interest Group on Graphics and Interactive Techniques, 2003, vol. 23, no. 3,pp. 641–650. DOI: 10.1145/882262.882319

[19] More J.J. Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Programming, 1974, vol. 6, no. 1, pp. 327–338. DOI: 10.1007/BF01580248

[20] Pauly M., Pai D.K., Guibas L.J. Quasi-rigid objects in contact. Proc. 31st Special Interest Group on Graphics and Interactive Techniques, 2004, pp. 109–119. DOI: 10.1145/1028523.1028539

[21] Muller M., Keiser R., Nealen A., Pauly M., Gross M., Alexa M. Point based animation of elastic, plastic and melting objects. Proc. Eurographics symposium on Computer animation, 2004,pp. 141–151. DOI: 10.1145/1028523.1028542

[22] Keiser R., Müller M., Heidelberger B., Teschner M., Gross M. Contact handling for deformable point-based objects. Proc. Vision, Modeling, and Visualization, 2004, pp. 665–674.

[23] Leskov A.G., Feoktistova E.V. [Algorithm for determining the intersection of arbitrary polygonal models for finding the contact collector, normals and depth of penetration during planning and modeling the grasp of a deformable object]. Sb. dokl. VIII Vserossiyskoy konf. molodykh uchenykh i spetsialistov «Budushchee mashinostroeniya Rossii» [Proc. VIII Russ. Conf. of Young Scientists and Specialists "The Future of Mechanical Engineering in Russia"]. Moscow, Bauman MSTU Publ., 2015. Pр. 988–992.

[24] Ashkenazy V.O. Splayn-poverkhnosti. Osnovy teorii i vychislitelnye algoritmy [Pline surfaces. Fundamentals of the theory and computational algorithms]. Tver, TSU Publ., 2003. 82 p.

[25] Skvortsov A.V. Triangulyatsiya Delone i ee primenenie [Delaunay triangulation and its Application]. Tomsk, TSU Publ., 2002. 128 p.

[26] Ledenev V.V., Odnolko V.G., Nguen Z.Kh. Teoreticheskie osnovy mekhaniki deformirovaniya i razrusheniya [Theoretical foundations of deformation and fracture mechanics]. Tambov, TSTU Publ., 2013. 312 p.

[27] Vasilkov D.M. Geometricheskoe modelirovanie i kompyuternaya grafika: vychislitelnye i algoritmicheskie osnovy [Geometric modeling and computer graphics: computational and algorithmic fundamentals]. Minsk, BSU Publ., 2011. 203 p.

[28] Alekseev A.E. Nonlinear deformation and stability of noncircular cylindrical shells under internal pressure and axial compression. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 4, pp. 617–621. DOI: 10.1023/A:1016066001346

[29] Leskov A.G., Seliverstova E.V., Bazhinova K.V. [Determination of elastic properties of manipulated object and the coefficient of friction between object and links of gripper device in automatic mode]. Sb. Dokl. IX Vserossiyskoy konf. molodykh uchenykh i spetsialistov «Budushchee mashinostroeniya Rossii» [Proc. IX Russ. Conf. of Young Scientists and Specialists "The Future of Mechanical Engineering in Russia"]. Moscow, Bauman MSTU Publ., 2016. Pр. 665–667.