Comparative Evaluation of Differential Equation Solutions in the Problem of Waveguide Straight Sections Bend in Communication Spacecraft
Authors: Kudryavtsev I.V., Sil’chenko P.N., Mikhnev M.M., Gotselyuk O.B. | Published: 14.02.2017 |
Published in issue: #1(112)/2017 | |
Category: Mechanics | Chapter: Dynamics and Strength of Machines, Instruments, and Equipment | |
Keywords: spacecraft, waveguide, straight section, nonaxisymmetric cross-section, thin-walled elements, plate, deflect-ted mode, calculation methods, analytical solution, Navier formula, finite-element method |
It is possible to create the extended thin-walled waveguide structures with minimum mass parameters and the best functional and operational characteristics only when using the corresponding specified calculation methods and solving the nonlinear differential equations describing the static, dynamic and thermoelastic states. The study gives the analytical solution of the system of nonlinear differential equations in quotient derivatives describing the deflected mode of the thin-walled structures of the rectangular cross-sectional waveguides straight sections at their bend. We evaluated such solution and compared it to other known methods. In particular, we compared the maximum stress values when the straight sections of the thin-walled waveguides of various standard sizes are bent. The values were obtained by applying the offered technique and as a result of calculation using Navier formula. We also applied a numerical finite-element method in ANSYS and used various types of finite elements. Findings of the research revealed some features of waveguides stressed state at the bend, and helped to specify the fields of applying various types of finite elements.
References
[1] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N. Method of stress-deformation distribution computation for waveguide spacecraft systems. Zhurnal SFU. Tekhnika i tekhnologii [Journal of SibFU. Engineering and Technologies], 2012, no. 2, pp. 150-161 (in Russ.). Available at: http://elib.sfu-kras.ru/eng/bitstream/handle/2311/3052/03_Silchenke.pdf?sequence=1
[2] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N. Dynamic state analysis of waveguide distribution systems from vibration loads effects while launching spacecraft into the orbit. Zhurnal SFU. Tekhnika i tekhnologii [Journal of SibFU. Engineering and Technologies], 2012, no. 2, pp. 205-219 (in Russ.). Available at: http://elib.sfu-kras.ru/eng/bitstream/handle/2311/3056/10_Silchenke.pdf?sequence=1
[3] Feodos’ev V.I. Soprotivlenie materialov [Materials strength]. Moscow, Bauman MSTU Publ., 1999. 592 p.
[4] Feodos’ev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov [Select problems and questions on materials strength]. Moscow, Nauka Publ., 1967. 376 p.
[5] Agamirov L.V. Soprotivlenie materialov [Materials strength]. Moscow, Astrel’ Publ., 2003. 256 p.
[6] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M. Differential equation system for spacecraft waveguide cell. Mezhd. konf. po diff. uravneniyam i dinamicheskim sistemam [Int. conf. on differential equations and dynamic systems. Suzdal’, July 2-7, 2010]. Pp. 172-174 (in Russ.).
[7] Novozhilov V.V., Chernykh K.F., Mikhaylovskiy E.I. Lineynaya teoriya tonkikh obolochek [First-order theory of thin shells]. Sankt-Petersburg, SPbGU Publ., 2010. 380 p.
[8] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York, Toronto, London, McGraw-Hill Book Co., 1969 (Russ. ed.: Plastinki i obolochki. Moscow, Editorial URSS Publ., 2009. 640 p.).
[9] Sil’chenko P.N., Kudryavtsev I.V., Zimin V.N., Gotselyuk O.B. Features of differential equation system solution and determination of "real" waveguide stress-strain behavior under bending. Materialy Vseross. nauch.-tekhn. konf. "Mekhanika i matematicheskoe modelirovanie v tekhnike" [Proc. Russ. Sci.-Tech. Conf. Mechanics and mathematical simulation in technique. May 17-19, 2016]. Moscow, 2016. Pp. 47-51 (in Russ.).
[10] Vlasov V.Z. Izbrannye Trudy. T. 2: Tonkostennye uprugie sterzhni. Printsipy postroeniya obshchey tekhnicheskoy teorii obolochek [Selectas. Vol. 2. Thin-walled elastic rods. Constructing principles of general technical theory of shells]. Moscow, AN SSSR Publ., 1963. 507 p.
[11] Rzhanitsyn A.R. Stroitel’naya mekhanika [Structural mechanics]. Moscow, Vysshaya shkola Publ., 1982. 400 p.
[12] Bychkov D.V. Stroitel’naya mekhanika sterzhnevykh tonkostennykh konstruktsiy [Structural mechanics of thin-walled rod constructions]. Moscow, Gosstroyizdat Publ., 1962. 387 p.
[13] Galanin M.P. Metody chislennogo analiza matematicheskikh modeley [Numerical analysis of mathematical models]. Moscow, Bauman MSTU Publ., 2012. 591 p.
[14] Timoshenko S.P. and Goodier J.N. Theory of elasticity. New York, Toronto, London, McGraw-Hill Book Company, 1951 (Russ. ed.: Teoriya uprugosti. Moscow, Nauka Publ., 1979. 560 p.).
[15] Parton V.Z., Perlin P.I. Metody matematicheskoy teorii uprugosti [Methods of mathematical elasticity theory]. Moscow, Nauka Publ., 1981. 688 p.
[16] Aleksandrov A.V. Osnovy teorii uprugosti i plastichnosti [Fundamentals of elasticity and plasticity theory]. Moscow, Vysshaya Shkola Publ., 1990. 400 p.
[17] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N., Gotselyuk O.B. Modul’ eksporta lokal’noy oblasti skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniem iz sterzhnevoy modeli v tverdotel’nuyu model’ ANSYS [Local region exporter for folded thin-walled shell waveguide construction structure with closed cross-section from beam to solid ANSYS model]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM № 2012661198 [Computer program registration certificate no. 2012661200], reg. date 12.2012.