part of the numerical solution permits to acheve the seventh order of
accuracy:
∂ ~U
i
∂t
+
F ~U
i
+1
/
2
−
F ~U
i
−
1
/
2
Δ
ξ
=
~F
2
.
Gas-dynamic parameters
U
n
+1
i
, U
n
i
are related to the centers of design
meshes, while the flows
F
n
i
±
1
/
2
, G
n
i
are to be determined on the surface
of these meshes. To rise the order of the approximation of the difference
scheme, one should retrieve the gas-dynamics parameters
Y
R,L
i
±
1
/
2
, Y
R,L
i
on
the right (index
R
)
and on the left (index
L
)
from the boundaries of
the design meshes. Then any function being retrieved
Y
(
x
)
,
[
x
=
{
ξ
}
]
,
ξ
∈
[
−
Δ
ξ
2
,
Δ
ξ
2
]
,
can be represented by piecewise-polynomial distributions:
Y
(
ξ
) =
Y
i
+
∂Y
∂ξ
i
[
ξ
−
ξ
i
] +
1
2!
∂
2
Y
∂ξ
2
i
[
ξ
−
ξ
i
]
2
−
−
2
3!
∂
2
Y
∂ξ
2
i
Δ
ξ
2
3
+
1
3!
∂
3
Y
∂ξ
3
i
[
ξ
−
ξ
i
]
3
+
1
4!
∂
4
Y
∂ξ
4
i
[
ξ
−
ξ
i
]
4
−
−
2
5!
∂
4
Y
∂ξ
4
i
Δ
ξ
2
5
+
1
5!
∂
5
Y
∂ξ
5
i
[
ξ
−
ξ
i
]
5
+
+
1
6!
∂
6
Y
∂ξ
6
i
[
ξ
−
ξ
i
]
6
−
2
7!
∂
4
Y
∂ξ
4
i
Δ
ξ
2
7
)
,
where
Y
R
i
+1
/
2
=
Y ξ
=
Δ
ξ
2
,
Y
L
i
−
1
/
2
=
Y ξ
=
−
Δ
ξ
2
, etc. Note, that
the formula data satisfy the balance relations:
Y
i
=
1
Δ
ξ
ξ
i
+1
/
2
Z
ξ
i
−
1
/
2
(
ξ
)
dξ
.
These piecewise-polynomial distributions should be limited (to bring
them to the monotonous form) by a function-limiter
ϕ
(
Y
)
[6]:
ϕ
(
Y
i
)=min
1
,
|
Y
i
−
max (
Y
k
)
|
Y
i
−
max
Y
k
−
1
/
2
, Y
k
+1
/
2
,
|
Y
i
−
min (
Y
k
)
|
Y
i
−
min
Y
k
−
1
/
2
, Y
k
+1
/
2
!
,
where
k
=
i
−
2
, i
−
1
, i
+ 1
, i
+ 2
; i.e.,
Y
(
ξ
) =
Y
i
+
ϕ
(
Y
i
)
∂Y
∂ξ
i
[
ξ
−
ξ
i
] +
+
1
2!
∂
2
Y
∂ξ
2
i
[
ξ
−
ξ
i
]
2
−
2
3!
∂
2
Y
∂ξ
2
i
Δ
ξ
2
3
+
+
1
3!
∂
3
Y
∂ξ
3
i
[
ξ
−
ξ
i
]
3
+
1
4!
∂
4
Y
∂ξ
4
i
[
ξ
−
ξ
i
]
4
−
2
5!
∂
4
Y
∂ξ
4
i
Δ
ξ
2
5
+
+
1
5!
∂
5
Y
∂ξ
5
i
[
ξ
−
ξ
i
]
5
+
1
6!
∂
6
Y
∂ξ
6
i
[
ξ
−
ξ
i
]
6
−
2
7!
∂
4
Y
∂ξ
4
i
Δ
ξ
2
7
)
.
10 ISSN 0236-3941. HERALD of the BMSTU. Series “Mechanical Engineering”. 2014. No. 1