Background Image
Previous Page  8 / 21 Next Page
Information
Show Menu
Previous Page 8 / 21 Next Page
Page Background

part of the numerical solution permits to acheve the seventh order of

accuracy:

∂ ~U

i

∂t

+

F ~U

i

+1

/

2

F ~U

i

1

/

2

Δ

ξ

=

~F

2

.

Gas-dynamic parameters

U

n

+1

i

, U

n

i

are related to the centers of design

meshes, while the flows

F

n

i

±

1

/

2

, G

n

i

are to be determined on the surface

of these meshes. To rise the order of the approximation of the difference

scheme, one should retrieve the gas-dynamics parameters

Y

R,L

i

±

1

/

2

, Y

R,L

i

on

the right (index

R

)

and on the left (index

L

)

from the boundaries of

the design meshes. Then any function being retrieved

Y

(

x

)

,

[

x

=

{

ξ

}

]

,

ξ

[

Δ

ξ

2

,

Δ

ξ

2

]

,

can be represented by piecewise-polynomial distributions:

Y

(

ξ

) =

Y

i

+

∂Y

∂ξ

i

[

ξ

ξ

i

] +

1

2!

2

Y

∂ξ

2

i

[

ξ

ξ

i

]

2

2

3!

2

Y

∂ξ

2

i

Δ

ξ

2

3

+

1

3!

3

Y

∂ξ

3

i

[

ξ

ξ

i

]

3

+

1

4!

4

Y

∂ξ

4

i

[

ξ

ξ

i

]

4

2

5!

4

Y

∂ξ

4

i

Δ

ξ

2

5

+

1

5!

5

Y

∂ξ

5

i

[

ξ

ξ

i

]

5

+

+

1

6!

6

Y

∂ξ

6

i

[

ξ

ξ

i

]

6

2

7!

4

Y

∂ξ

4

i

Δ

ξ

2

7

)

,

where

Y

R

i

+1

/

2

=

Y ξ

=

Δ

ξ

2

,

Y

L

i

1

/

2

=

Y ξ

=

Δ

ξ

2

, etc. Note, that

the formula data satisfy the balance relations:

Y

i

=

1

Δ

ξ

ξ

i

+1

/

2

Z

ξ

i

1

/

2

(

ξ

)

.

These piecewise-polynomial distributions should be limited (to bring

them to the monotonous form) by a function-limiter

ϕ

(

Y

)

[6]:

ϕ

(

Y

i

)=min

1

,

|

Y

i

max (

Y

k

)

|

Y

i

max

Y

k

1

/

2

, Y

k

+1

/

2

,

|

Y

i

min (

Y

k

)

|

Y

i

min

Y

k

1

/

2

, Y

k

+1

/

2

!

,

where

k

=

i

2

, i

1

, i

+ 1

, i

+ 2

; i.e.,

Y

(

ξ

) =

Y

i

+

ϕ

(

Y

i

)

∂Y

∂ξ

i

[

ξ

ξ

i

] +

+

1

2!

2

Y

∂ξ

2

i

[

ξ

ξ

i

]

2

2

3!

2

Y

∂ξ

2

i

Δ

ξ

2

3

+

+

1

3!

3

Y

∂ξ

3

i

[

ξ

ξ

i

]

3

+

1

4!

4

Y

∂ξ

4

i

[

ξ

ξ

i

]

4

2

5!

4

Y

∂ξ

4

i

Δ

ξ

2

5

+

+

1

5!

5

Y

∂ξ

5

i

[

ξ

ξ

i

]

5

+

1

6!

6

Y

∂ξ

6

i

[

ξ

ξ

i

]

6

2

7!

4

Y

∂ξ

4

i

Δ

ξ

2

7

)

.

10 ISSN 0236-3941. HERALD of the BMSTU. Series “Mechanical Engineering”. 2014. No. 1