С.В. Мосолов, Д.А. Сидлеров
52
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 2
[4] Tucker P.K., Shee W., et al. A global optimization methodology for GO2/GH2 single
element injector design.
4th Symposium on Liquid Space Propulsion
. DLR/Lmp., Germany,
March 13–15, 2000.
[5] Novikov A.V., Yagodnikov D.A., Burkal'tsev V.A., Lapitskiy V.I. Mathematical model and cal-
culates the performance of the workflow in the combustion chamber rocket engine thrusters on the
components of the methane-oxygen fuel.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashi-
nostr. Spets. vyp. “Teoriya i praktika sovremennogo raketnogo dvigatelestroeniya”
[Herald of the
Bauman Moscow State Tech. Univ., Mech. Eng., Spec. Iss. “Theory and practice of modern rocket
propulsion engineering”], 2004, pp. 8–17.
[6] Ruiz A. Unsteady numerical simulations of transcritical turbulent combustion in liquid
rocket engines. PhD, Institut National Polytechnique de Toulouse, 2012.
[7] Yue Chun-guo, Chang Xin-long, Yang Shu-jun, Zhang You-hong. Numerical simulation of
interior flow field of a variable thrust rocket engine
. Advanced Materials Research
, 2011,
vol. 186, pp. 215–219. DOI: 10.4028
/www.scientific.net/AMR.186.215Available at:
https://www.scientific.net/AMR.186.215[8] Wang Zhen-guo. Internal combustion processes of liquid rocket engines: modeling and
numerical simulations. National Defense Industry Press. 2016. DOI: 10.1002/9781118890035
Available at:
http://onlinelibrary.wiley.com/book/10.1002/9781118890035; jsessionid=608EB60A578C8FD11FA183AA2927A569.f03t03
[9] Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the
centrifugal atomizer.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.
[Herald of
the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 37–54.
DOI: 10.18698/0236-3941-2016-3-37-54
[10] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation and
investigation of working process features in high-duty combustion chambers.
Journal of Engi-
neering Thermophysics
, 2008, vol. 17, no. 3, pp. 196–217.
[11] Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti
[Numerical solution of heat exchange and fluid dynamics problems]. Moscow, Energo-
atomizdat Publ., 1984. 148 p.
[12] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation of
operational processes in the combustion chamber and gas generator of oxygen-methane liquid
rocket engine. EUCASS book Progress in Propulsion Physics, Torus press, 2009.
[13] Mosolov S.V., Sidlerov D.A., Ponomarev A.A., Smirnov Yu.L. Numerical research on the
peculiarities of the operational process in LRE combustion chambers propelled by oxygen and
hydrocarbons.
Trudy MAI
, 2012, no. 58. Available at:
http://www.mai.ru/science/trudy/published.php?ID=33406
[14] Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Comparative analyses of the peculiarities of the
operational process in LRE combustion chambers with coaxial-jet and jet-centrifugal injectors us-
ing numerical simulation.
Trudy MAI
, 2012, no. 59. Available at:
http://www.mai.ru/science/trudy/published.php?ID=34989
[15] Sidlerov D.A., Ponomarev A.A. Numerical simulation of fuel droplets evaporation and
combustion regimes in the combustion chambers of liquid rocket engines.
Trudy MAI
, 2014,
no. 77. Available at:
http://www.mai.ru/science/trudy/published.php?ID=53138&eng=N