Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

С.В. Мосолов, Д.А. Сидлеров

52

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 2

[4] Tucker P.K., Shee W., et al. A global optimization methodology for GO2/GH2 single

element injector design.

4th Symposium on Liquid Space Propulsion

. DLR/Lmp., Germany,

March 13–15, 2000.

[5] Novikov A.V., Yagodnikov D.A., Burkal'tsev V.A., Lapitskiy V.I. Mathematical model and cal-

culates the performance of the workflow in the combustion chamber rocket engine thrusters on the

components of the methane-oxygen fuel.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashi-

nostr. Spets. vyp. “Teoriya i praktika sovremennogo raketnogo dvigatelestroeniya”

[Herald of the

Bauman Moscow State Tech. Univ., Mech. Eng., Spec. Iss. “Theory and practice of modern rocket

propulsion engineering”], 2004, pp. 8–17.

[6] Ruiz A. Unsteady numerical simulations of transcritical turbulent combustion in liquid

rocket engines. PhD, Institut National Polytechnique de Toulouse, 2012.

[7] Yue Chun-guo, Chang Xin-long, Yang Shu-jun, Zhang You-hong. Numerical simulation of

interior flow field of a variable thrust rocket engine

. Advanced Materials Research

, 2011,

vol. 186, pp. 215–219. DOI: 10.4028

/www.scientific.net/AMR.186.215

Available at:

https://www.scientific.net/AMR.186.215

[8] Wang Zhen-guo. Internal combustion processes of liquid rocket engines: modeling and

numerical simulations. National Defense Industry Press. 2016. DOI: 10.1002/9781118890035

Available at:

http://onlinelibrary.wiley.com/book/10.1002/

9781118890035; jsessionid=608EB60A578C8FD11FA183AA2927A569.f03t03

[9] Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the

centrifugal atomizer.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.

[Herald of

the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 37–54.

DOI: 10.18698/0236-3941-2016-3-37-54

[10] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation and

investigation of working process features in high-duty combustion chambers.

Journal of Engi-

neering Thermophysics

, 2008, vol. 17, no. 3, pp. 196–217.

[11] Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti

[Numerical solution of heat exchange and fluid dynamics problems]. Moscow, Energo-

atomizdat Publ., 1984. 148 p.

[12] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation of

operational processes in the combustion chamber and gas generator of oxygen-methane liquid

rocket engine. EUCASS book Progress in Propulsion Physics, Torus press, 2009.

[13] Mosolov S.V., Sidlerov D.A., Ponomarev A.A., Smirnov Yu.L. Numerical research on the

peculiarities of the operational process in LRE combustion chambers propelled by oxygen and

hydrocarbons.

Trudy MAI

, 2012, no. 58. Available at:

http://www.mai.ru/science/trudy/

published.php?ID=33406

[14] Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Comparative analyses of the peculiarities of the

operational process in LRE combustion chambers with coaxial-jet and jet-centrifugal injectors us-

ing numerical simulation.

Trudy MAI

, 2012, no. 59. Available at:

http://www.mai.ru/science/trudy/

published.php?ID=34989

[15] Sidlerov D.A., Ponomarev A.A. Numerical simulation of fuel droplets evaporation and

combustion regimes in the combustion chambers of liquid rocket engines.

Trudy MAI

, 2014,

no. 77. Available at:

http://www.mai.ru/science/trudy/published.php?ID=53138&eng=N