Previous Page  15 / 17 Next Page
Information
Show Menu
Previous Page 15 / 17 Next Page
Page Background

С.В. Федоров, Н.А. Федорова

54

ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 4

ximately twice for all considered types of soil and rocky tar-

gets. With the increase in initial velocity, the relative incre-

ment of penetration depth decreases at the fixed mass of

a solid propellant charge. It is caused by the decrease in a

relative share of chemical energy of rocket propellant com-

bustion in comparison with initial kinetic energy of the pro-

jectile. For projectile velocity of 1000 m/s and a reserve of

rocket propellant in 20 % of projectile weight, the penetration

depth increment reaches 60 % for dense soil, 45 % for low-

strength rock and 40 % for high-strength rock at a rational

choice of jet impulse parameters

REFERENCES

[1] Veldanov V.A., Smirnov V.E., Khavroshkin O.B. Lunar penetrator: reducing overloading

and penetration control.

Solar System Research

, 1999, vol. 33, no. 5, pp. 432–436.

[2] Orlenko L.P., ed. Fizika vzryva. V 2 t. T. 1 [Physics of explosion. In 2 vol. Vol. 1]. Moscow,

Fizmatlit Publ., 2004, 832 p.

[3] Kaminskiy M.V., Kopytov G.F., Kiselev Yu.G., Kochnev Yu.V., Mogilev V.A., Fateev Yu.A.

Critical velocity at introduction of projectiles with a conic nose form into soil targets.

Sb. mat.

III nauch. konf. Volzhskogo regionalnogo centra RARAN “Sovremennye metody proektirovaniya

i otrabotki raketno-artilleriyskogo vooruzheniya”. V 2 t.

[Collection of papers of the III-rd sci.

conf. of the RAMAS Volga regional center “Advanced methods of design and development of

missile and artillery weapons”. In 2 vol.]. Sarov, RFYaC–VNIIEF Publ., 2004, vol. 2, pp. 642–

647 (in Russ.).

[4] Forrestal M.J., Lee L.M., Jenrette B.D. Laboratory-scale penetration experiments into geo-

logical targets to impact velocities of 2.1 km/s.

J. Appl. Mech.

, 1986, vol. 53, no. 2, pp. 317–320.

[5] Fedorov S.V., Veldanov V.A. Application of segmented projectiles for cavity formation in

soil and rocky targets.

Izv. Ross. Akad. raketnykh i artilleriyskikh nauk

[Bulletin of the Russian

Academy of Missile and Artillery Sciences], 2012, no. 1(71), pp. 43−50 (in Russ.).

[6] Sagomonyan

A.Ya

. Pronikanie [Penetration]. Moscow, Mos. Gos. Univ. Publ., 1974, 300 p.

[7] Fedorov S.V., Bayanova Ya.M. Penetration of long strikers under hydrodynamic condi-

tions with allowance for the material compressibility.

Technical Physics. Russ. J. Appl. Phys.

,

2011, vol. 56, no. 9, pp. 1266–1271.

[8] Fedorov S.V., Veldanov V.A. Numerical simulation of cavity formation in soil by a flux of

high-speed metallic penetrators.

Technical Physics. Russ. J. Appl. Phys.

, 2006, vol. 51, no. 7,

pp. 952–955.

[9] Fedorov S.V. On the penetration depth of a porous striker moving with a hypersonic velo-

city.

Technical Physics. Russ. J. Appl. Phys.

, 2007, vol. 52, no. 10, pp. 1379–1382.

[10] Ben-Dor G., Dubinsky A., Elperin T. Optimization of penetration into geological and

concrete shields by impactor with jet thruster.

Journal of Mechanics of Materials and

Structures

, 2008, vol. 3, no. 4, pp. 707–727.

[11] Veldanov V.A. Numerical estimate of spacecrafts modules penetration into asteroids.

Tr. Mezhdunar. nauch. konf. “Kosmicheskaya zashhita Zemli”

[Proc. of Int. sci. conf. “Space

Protection of Earth”]. Snezhinsk, RFYaC–VNIITF Publ., 1997, pp. 173–178 (in Russ.).