С.В. Федоров, Н.А. Федорова
54
ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2016. № 4
ximately twice for all considered types of soil and rocky tar-
gets. With the increase in initial velocity, the relative incre-
ment of penetration depth decreases at the fixed mass of
a solid propellant charge. It is caused by the decrease in a
relative share of chemical energy of rocket propellant com-
bustion in comparison with initial kinetic energy of the pro-
jectile. For projectile velocity of 1000 m/s and a reserve of
rocket propellant in 20 % of projectile weight, the penetration
depth increment reaches 60 % for dense soil, 45 % for low-
strength rock and 40 % for high-strength rock at a rational
choice of jet impulse parameters
REFERENCES
[1] Veldanov V.A., Smirnov V.E., Khavroshkin O.B. Lunar penetrator: reducing overloading
and penetration control.
Solar System Research
, 1999, vol. 33, no. 5, pp. 432–436.
[2] Orlenko L.P., ed. Fizika vzryva. V 2 t. T. 1 [Physics of explosion. In 2 vol. Vol. 1]. Moscow,
Fizmatlit Publ., 2004, 832 p.
[3] Kaminskiy M.V., Kopytov G.F., Kiselev Yu.G., Kochnev Yu.V., Mogilev V.A., Fateev Yu.A.
Critical velocity at introduction of projectiles with a conic nose form into soil targets.
Sb. mat.
III nauch. konf. Volzhskogo regionalnogo centra RARAN “Sovremennye metody proektirovaniya
i otrabotki raketno-artilleriyskogo vooruzheniya”. V 2 t.
[Collection of papers of the III-rd sci.
conf. of the RAMAS Volga regional center “Advanced methods of design and development of
missile and artillery weapons”. In 2 vol.]. Sarov, RFYaC–VNIIEF Publ., 2004, vol. 2, pp. 642–
647 (in Russ.).
[4] Forrestal M.J., Lee L.M., Jenrette B.D. Laboratory-scale penetration experiments into geo-
logical targets to impact velocities of 2.1 km/s.
J. Appl. Mech.
, 1986, vol. 53, no. 2, pp. 317–320.
[5] Fedorov S.V., Veldanov V.A. Application of segmented projectiles for cavity formation in
soil and rocky targets.
Izv. Ross. Akad. raketnykh i artilleriyskikh nauk
[Bulletin of the Russian
Academy of Missile and Artillery Sciences], 2012, no. 1(71), pp. 43−50 (in Russ.).
[6] Sagomonyan
A.Ya. Pronikanie [Penetration]. Moscow, Mos. Gos. Univ. Publ., 1974, 300 p.
[7] Fedorov S.V., Bayanova Ya.M. Penetration of long strikers under hydrodynamic condi-
tions with allowance for the material compressibility.
Technical Physics. Russ. J. Appl. Phys.
,
2011, vol. 56, no. 9, pp. 1266–1271.
[8] Fedorov S.V., Veldanov V.A. Numerical simulation of cavity formation in soil by a flux of
high-speed metallic penetrators.
Technical Physics. Russ. J. Appl. Phys.
, 2006, vol. 51, no. 7,
pp. 952–955.
[9] Fedorov S.V. On the penetration depth of a porous striker moving with a hypersonic velo-
city.
Technical Physics. Russ. J. Appl. Phys.
, 2007, vol. 52, no. 10, pp. 1379–1382.
[10] Ben-Dor G., Dubinsky A., Elperin T. Optimization of penetration into geological and
concrete shields by impactor with jet thruster.
Journal of Mechanics of Materials and
Structures
, 2008, vol. 3, no. 4, pp. 707–727.
[11] Veldanov V.A. Numerical estimate of spacecrafts modules penetration into asteroids.
Tr. Mezhdunar. nauch. konf. “Kosmicheskaya zashhita Zemli”
[Proc. of Int. sci. conf. “Space
Protection of Earth”]. Snezhinsk, RFYaC–VNIITF Publ., 1997, pp. 173–178 (in Russ.).