|

Using the Modified One-Group Model of Reactor Kinetics For Negative Perturbations of Reactivity

Authors: Koposov E.B. Published: 15.09.2014
Published in issue: #4(97)/2014  

DOI: 10.18698/0236-3941-2014-4-

 
Category: Simulation of Processes  
Keywords: nuclear reactor, reactivity, kinetics, dynamics, process, calculation, model

The modified one-group model of reactor kinetics is considered, in which the effective decay constant of delayed neutron nuclei-precursors is a function of reactivity perturbation in its negative value domain. The dependence of effective decay constant is determined in the perturbation interval -1≤p/ß<0, the marked decrease in λ with an increase of reactivity magnitude is shown, which corresponds to the increase in the average lifetime of nuclei-precursors. The determined dependence, unlike that in the positive perturbation domain, has a clearly pronounced nonlinearity, which makes it possible to satisfactorily approximate it only by a polynomial of degree three. The performed approximation allows the application of the modified one-group model in the indicated perturbation interval with a reasonable level of errors in contrast to the one-group models with the unchangeable decay constants of nuclei-precursors. Using the modified one-group kinetics model permits a reactor period to be calculated with a high accuracy unlike the application of typical one-group models yielding the fundamentally incorrect results at substantial perturbations.

References

[1] Koposov E.B. Modified one-group model of reactor kinetics with extended field of application. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2013, no. 4, pp. 16-27 (in Russ.).

[2] Hetrick D.L. Dynamics of nuclear reactors. Chicago, Univ. Chicago Press, 1971. 552 p. (Russ. ed.: Khetrik D. Dinamika yadernykh reaktorov. Moscow, Atomizdat Publ., 1975. 400 p.).

[3] Koposov E.B. Kinetika yadernykh reaktorov [Kinetics of nuclear reactors]. Moscow, mGtU im. N.E. Baumana Publ., 2005. 68 p.

[4] Himmelblau D.M. Process analysis by statistical methods. New York, Wiley, 1968. 460 p. (Russ. ed.: Khimmel’blau D. Analiz protsessov statisticheskimi metodami. Moscow, Mir Publ., 1973. 957 p.).

[5] Naumov V.I. Fizicheskie osnovy bezopasnosti yadernykh reaktorov [Physical principles of nuclear reactor safety]. Moscow, MIFI Publ., 2003. 156 p.

[6] Harrer J.M. Nuclear reactor control engineering. Van Nostrand, 1963. 587 p. (Russ. ed.: Kharrer D.M. Tekhnika regulirovaniya yadernykh reaktorov. Moscow, Atomizdat Publ., 1967. 492 p.).

[7] Emel’yanov I.Y., Efanov A.I., Konstantinov L.V., Dollezhalya N.A., eds. Nauchno-tekhnicheskie osnovy upravleniya yadernymi reaktorami [Scientific and technical principles of nuclear reactor control]. Moscow, Energoizdat Publ., 1981. 360 p.

[8] Sarkisov A.A., Puchkov V.N. Fizika perekhodnykh protsessov v yademykh reaktorakh [Physics of transient processes in nuclear reactors]. Moscow, Energoatomizdat Publ., 1983. 232 p.

[9] Murrey R.D. Nuclear reactor physics. Prentice-Hall, 1957. 317 p. (Russ. ed.: Merrey R. Fizika yadernykh reaktorov. Moscow, Atomizdat Publ, 1959. 292 p.).

[10] Keepin G. R. Physics of nuclear kinetics. Addison-Wesley Pub. Co, 1965. 435 p. (Russ. ed.: Kipin D.R. Fizicheskie osnovy kinetiki yadernykh reaktorov. Atomizdat Publ., 1967. 428 p.).