|

Estimation of Thermal Conductivity of the Fibrous Composite with Continuous Variation in the Thermal Conductivity of the Intermediate Later between the Fiber and Matrix

Authors: Zarubin V.S., Kuvyrkin G.N., Savelieva I.Yu. Published: 20.11.2013
Published in issue: #4(93)/2013  

DOI:

 
Category: Simulation of Processes  
Keywords: composite, fiber, intermediate layer, effective coefficient of thermal conductivity

Composites are widely used as constructional and functional materials in various instrument devices. A significant amount of works is devoted to research of thermal conductivity of composites. However the calculation formulas in these works are derived, as a rule, either as a result of processing of experimental data with reference to specific materials, or by a priori setting of the temperature and heat flow distributions in models of heterogeneous body structures. A mathematical model of thermal energy transfer in the composite reinforced with sufficiently long anisotropic fibers oriented in one direction is offered taking into account the possibility of an intermediate layer occurred between the fibers and the matrix, whose thermal conductivity varies continuously across the thickness.

Based on this model, the formulas for calculating the effective thermal conductivity coefficients of this composite are deduced. The dual variational formulation of the stationary thermal conductivity problem was applied for estimating a possible error of obtained results. The results can be used to predict the effective thermal conductivity coefficients of fibrous composites.

References

[1] Vasil’ev V.V., Protasov V.D., Bolotin V.V., Alfutov N.A., Beil’ A.I., Bunakov V.A., Dymkov I.A., Ermolenko A.F., Zhigun I.G., Zinov’ev P.A., Kintsis I.I., Kleimenov V.V., Kruklin’sh A.A., Kul’kov A.A., Manuylov V.F., Popov B.G., Portnov G.G., Sirotkin O.S., Skudra A.M., Solov’ev I.A, Tamopol’skiy Y.M., Tsarakhov K.S. Kompozitsionnye marerialy. Spravochnik [Composite Materials. Handbook]. Moscow, Mashinostroenie Publ., 1990. 512 p.

[2] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya. [Winding technology for composite structures of missiles and weapons]. Moscow. MGTU im. N. E. Baumana Publ., 2011. 431 p.

[3] Lubin G. Handbook of composites. New York, Van Nostrand Reinhold, 1982. 786 p. (Russ. ed.: Liubin D. Spravochnik po kompozitsionnym materialam. Moscow, Mashinostroenie Publ., vol. 1, 1988. 488 p.)

[4] Broutman L.J., Krock R.H., Plueddemann E.P. Composite materials. Vol. 6. Interfaces in polymer matrix composites. Academic Press, 1974. 294 p. (Russ. ed.: Brautman L., Krok R., Plyudeman E. Kompozitsionnye materialy. Tom 6. Poverkhnosti razdela v polimernykh kompozitakh. Moscow, Mir Publ., 1978, 294 p.).

[5] Metcalfe A.G. Interfaces in metal matrix composites. Academic Press, 1974. 421 p. (Russ. ed.: Metkalf A. Poverkhnosti razdela v metallicheskikh kompozitakh. Moscow, Mir Publ., 1978. 437 p.).

[6] Tsoy B., Kartashov E.M., Shevelev V.V., Valishin A.A. Razrushenie tonkikh plenok i volokon [The destruction of thin films and fibers]. Moscow, Khimiya Publ., 1977. 343 p.

[7] Trofimov N.N., Kanovich M.Z., Kartashov E.M., Natrusov VI., Ponomarenko A.T., Shevchenko V.G., Sokolov V.I., Simonov-Emelyanov I.D. Fizika kompozitsionnykh materialov [Physics of composite materials]. In 2 volumes. Moscow, MIR Publ., 2005. 456 p. (vol. 1), 344 p. (vol. 2).

[8] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Y. Teploprovodnost’ kompozitov s sharovymi vklyucheniyami [Thermal conductivity of composites with spherical inclusions]. Moscow, LAP Lambert Acad. Publ., 2013. 77 p.

[9] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro-inhomogeneous media]. Moscow, Nauka Publ., 1977. 400 p.

[10] Zaytsev V.F., Polyanin A.D. Spravochnik po lineynym obyknovennym differentsial’nym uravneniyam [Handbook on linear ordinary differential equations]. Moscow, Faktorial Publ., 1997. 304 p.

[11] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. The mixture models of the mechanics of composites. Part 1. Thermomechanics and thermoelasticity of a multicomponent mixture. Vestn. Mosk. Gos. Tekh. Univ. im.N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2009, no. 3, pp. 36-49 (in Russ).

[12] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving problems of heat conduction]. Moscow, Energoatomizdat Publ., 1983. 329 p.

[13] Zarubin VS., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 512 p.