|

Determination of the Constants of the Equation of State for Calculating the Elastic Properties of Various Engine Fuels and Technical Fluids

Authors: Grekhov L.V., Markov V.An., Arsenov  N.А., Zhao J., Sa B. Published: 17.12.2022
Published in issue: #4(143)/2022  

DOI: 10.18698/0236-3941-2022-4-108-137

 
Category: Power Engineering | Chapter: Heat Engines  
Keywords: fuel supply equipment, equation of state, fuel, alternative fuels, ultrahigh pressures, constants of the equation of state, elastic properties of fuels

Abstract

The creation of modern mathematical models of unsteady high-pressure fuel injection in engines requires the replacement of universal empirical equations for one of the elastic properties of fuel by a mathematically more correct equation of state. The necessity of the existence and use of convenient and simple forms of the equation of state, allowing the values of density, compressibility factor and sound velocity of traditional and alternative fuels for diesel engines to be determined quickly and with sufficient accuracy, has been substantiated. Modern approaches to the description of the state of droplet and two-phase liquids are analyzed. The absence of phase transitions in the process of fuel delivery under high pressures has allowed to substantiate the possibility of using the equation of state for the forward and backward account. An equation of state adequate to processes with high and ultrahigh pressures (up to 400 MPa) and moderately high temperatures (up to 460 K) has been proposed. The equipment used and the method of obtaining empirical information through determination of the current sound velocity are described. A method for calculating the values of constants of the chosen form of the equation of state in the form of expressions determining their dependence on temperature and an algorithm for calculating the constants of the equation of state in processing experimental data are presented. Based on literature data, as well as the results of studies conducted, sets of empirical equation of state constants for 49 diesel fuels, various test and technical fluids, and alternative motor fuels are obtained

The research was supported by RSF (project no. 21-49-00012)

Please cite this article in English as:

Grekhov L.V., Markov V.А., Arsenov N.А., et al. Determination of the constants of the equation of state for calculating the elastic properties of various engine fuels and technical fluids. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 4 (143), pp. 108--137 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-4-108-137

References

[1] Herrmann O. Ultra high pressure and enhanced multiple injection --- potentials for the diesel engine and challenge for the fuel injection system. Fuel Systems for IC Engines, 2012, pp. 103--114. DOI: https://doi.org/10.1533/9780857096043.4.103

[2] Kendlbacher C., Muller P., Bernhaupt M., et al. Large engine injection systems for future emission legislations. CIMAC Cong., 2010, p. 50.

[3] Pflaum S., Wloka J., Wachtmeister G. Emission reduction potential of 3000 bar Common Rail Injection and development trends. CIMAC Cong., 2010, p. 195.

[4] Nishida K., Zhu J., Leng X., et al. Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. Int. J. Engine Res., 2017, vol. 18, no. 1-2, pp. 51--65. DOI: https://doi.org/10.1177/1468087416688805

[5] Wang X., Huang Z., Zhang W., et al. Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Appl. Energy., 2011, vol. 88, no. 5, pp. 1620--1628. DOI: https://doi.org/10.1016/j.apenergy.2010.11.035

[6] Alavianmehr M.V., El-Shaikh M., Akbari F. A new equation of state for modeling thermodynamic properties of some fatty acids alkyl esters, methyl ester-based bio-diesels and their blends. Fluid Phase Equilib., 2017, vol. 442, pp. 53--61. DOI: https://doi.org/10.1016/j.fluid.2017.03.004

[7] Heywood J.B. Internal combustion engine fundamentals. New York, McGraw-Hill, 1988.

[8] Garrappa R., Lino P., Maione G., et al. Model optimization and flow rate prediction in electro-injectors of diesel injection systems. IFAC-PapersOnLine, 2016, vol. 49, no. 11, pp. 484--489. DOI: https://doi.org/10.1016/j.ifacol.2016.08.071

[9] Aquing M., Ciotta F., Creton B., et al. Composition analysis and viscosity prediction of complex fuel mixtures using a molecular-based approach. Energy Fuels, 2012, vol. 26, no. 4, pp. 2220--2230. DOI: https://doi.org/10.1021/ef300106z

[10] Munster A. Classical thermodynamics. London, Wiley-Interscience, 1970.

[11] Schaschke C., Fletcher I., Glen N. Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature. Processes, 2013, vol. 1, no. 2, pp. 30--48. DOI: https://doi.org/10.3390/pr1020030

[12] Redlich O., Kwong J.N. On the thermodynamics of solutions. An equation of state. Fugacities of gaseous solutions. Chem. Rev., 1949, vol. 44, no. 1, pp. 233--244. DOI: https://doi.org/10.1021/cr60137a013

[13] Zherdev A.A. Determination of thermodynamic properties of refrigerants with the help of the equation of state of Redlih --- Quong. Vestnik Mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2002, no. 2, pp. 30--32 (in Russ.).

[14] Bychkov E.G., Makarov B.A., Yakovlev V.I., et al. Comparative analysis of equations of state for calculating the thermodynamic properties of a vapor-liquid multi-component refrigerant blend comprising the working fluid of a low-temperature throttling refrigeration unit. Chem. Petrol Eng., 2020, vol. 56, no. 5-6, pp. 393--402. DOI: https://doi.org/10.1007/s10556-020-00786-9

[15] Benedict M., Webb G.B., Rubin L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. Methane, ethane, propane and n-butane. J. Chem. Phys., 1940, vol. 8, no. 4, art. 334. DOI: https://doi.org/10.1063/1.1750658

[16] Masoudi M., Miri R., Hellevang H., et al. Modified PC-SAFT characterization technique for modeling asphaltenic crude oil phase behavior. Fluid Phase Equilib., 2020, vol. 513, art. 112545. DOI: https://doi.org/10.1016/j.fluid.2020.112545

[17] Aleksandrov I.S., Grigoryev B.A., Gerasimov A.A. Predicting phase behavior of technological oil fractions on basis of a new PC-SAFT equation of state and artificial neural networks. Vesti gazovoy nauki, 2018, no. 5, pp. 4--11 (in Russ.).

[18] Shi F., Chen J. New state equation for biodiesel derived from molecular adiabatic compressibility under high pressure and high temperature. Fuel, 2015, vol. 158, pp. 582--590. DOI: https://doi.org/10.1016/j.fuel.2015.06.002

[19] Tammann G. Ueber die Beziehungen zwischen den inneren Kraften und Eigen-schaften der Losungen. Leipzig, L. Voss, 1907.

[20] Rowane A.J., Babu M.V., Rokni H.B., et al. A. Effect of composition, temperature and pressure on the viscosities and densities of three diesel fuels. J. Chem. Eng. Data., 2019, vol. 64, no. 12, pp. 5529--5547. DOI: https://doi.org/10.1021/acs.jced.9b00652

[21] Kolev N.I. Thermodynamic and transport properties of diesel fuel. In: Multi-phase flow dynamics 4. Berlin, Heidelberg, Springer-Verlag, 2012, pp. 293--327. DOI: https://doi.org/10.1007/978-3-642-20749-5_13

[22] Kielczynski P., Ptasznik S., Szalewski M., et al. Thermophysical properties of rapeseed oil methyl esters (RME) at high pressures and various temperatures evaluated by ultrasonic methods. Biomass Bioenergy, 2017, vol. 107, pp. 113--121. DOI: https://doi.org/10.1016/j.biombioe.2017.09.015

[23] Peleties F., Segovia J.J., Trusler J.P.M., et al. Thermodynamic properties and equation of state of liquid di-isodecyl phthalate at temperature between (273 and 423) K and at pressures up to 140 MPa. J. Chem. Thermodyn., 2010, vol. 42, no. 5, pp. 631--639. DOI: https://doi.org/10.1016/j.jct.2009.12.002

[24] Cole R.H. Underwater explosions. Princeton, Princeton Univercity Press, 1948.

[25] Zhao J., Grekhov L., Onishchenko D., et. al. Methods for calculating fuel heating in electrically controlled injectors of Common Rail diesel systems. Fuel, 2021, vol. 305, art. 121526. DOI: https://doi.org/10.1016/j.fuel.2021.121526

[26] Grekhov L.V. Nauchnye osnovy razrabotki sistem toplivopodachi v tsilindry dvigateley vnutrennego sgoraniya. Avtoref. dis. d-ra tekh. nauk [Scientific basis of fuel delivery system to the internal combustion engine cylinders. Abs. Dr. Sc. (Eng.). Diss.]. Moscow, Bauman MSTU, 1999 (in Russ.).

[27] Zhao J., Lu X., Grekhov L. Experimental study on the fuel heating at the nozzle of the high pressure common-rail injector. Fuel, 2021, vol. 283, art. 119281. DOI: https://doi.org/10.1016/j.fuel.2020.119281

[28] Grekhov L.V., Negovora A.V., Davletov A.F. Experimental determination of injection characteristics in rig tests for diagnosing technical state of diesel engine fuel equipment. Gruzovik, 2012, no. 10, pp. 34--40 (in Russ.).

[29] Bosch W. Der Einspritzgesetz-indikator, ein neues Messgerat zur direkten Bestimmung des Einspritzgesetzes von Einzeleinspritzungen. Motortechn, 1964, no. 7, pp. 268--282.

[30] Daridon J.L., Lagrabette A., Lagourette B. Speed of sound, density and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure. J. Chem. Thermodyn., 1998, vol. 30, no. 5, pp. 607--623. DOI: https://doi.org/10.1006/jcht.1997.0330

[31] Dzida M., Prusakiewicz P. The effect of temperature and pressure on the physicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel, 2008, vol. 87, no. 10-11, pp. 1941--1948. DOI: https://doi.org/10.1016/j.fuel.2007.10.010

[32] Giuliano Albo P.A., Lago S. Experimental speed-of-sound measurements of pure fatty acids methyl ester, mineral diesel and blends in a wide range of temperature and for pressures up to 300 MPa. Fuel, 2014, vol. 115, pp. 740--748. DOI: https://doi.org/10.1016/j.fuel.2013.07.103

[33] Kadiata E.Ch., Slavutskiy V.M., Kurapin A.V., et al. Compressibility of palm oil and its mixtures with diesel fuel. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2018, vol. 22, no. 10, pp. 178--188 (in Russ.). DOI: https://doi.org/10.21285/1814-3520-2018-10-178-188

[34] Alptekin E., Canakci M. Determination of the density and the viscosities of bio-diesel-diesel fuel blends. Renew. Energy, 2008, vol. 33, no. 12, pp. 2623--2630. DOI: https://doi.org/10.1016/j.renene.2008.02.020

[35] Safarov J., Ashurova U., Ahmadov B., et al. Thermophysical properties of Diesel fuel over a wide range of temperatures and pressures. Fuel, 2018, vol. 216, pp. 870--889. DOI: https://doi.org/10.1016/j.fuel.2017.11.125

[36] Dzida M., Zak A., Ernst S. Thermodynamic and acoustic properties of binary mixtures of alcohols and alkanes. I. Speed of sound in (ethanol+n-heptane) under elevated pressures. J. Chem. Thermodyn., 2005, vol. 37, no. 5, pp. 405--414. DOI: https://doi.org/10.1016/j.jct.2004.10.001

[37] Torres-Jimenez E., Dorado M.P., Kegl B. Experimental investigation on injection characteristics of bioethanol-diesel fuel and bioethanol-biodiesel blends. Fuel, 2011, vol. 90, no. 5, pp. 1968--1979. DOI: https://doi.org/10.1016/j.fuel.2010.11.042

[38] Davila M.J., Gedanitz H., Span R. Speed of sound measurements of liquid C1--C4 alkanols. J. Chem. Thermodyn., 2016, vol. 93, pp. 157--163. DOI: https://doi.org/10.1016/j.jct.2015.10.006

[39] Dashti H.H., Riazi M.R. Acoustic velocities in petroleum fluids: measurement and prediction. J. Pet. Sc. Eng., 2014, vol. 124, pp. 94--104. DOI: https://doi.org/10.1016/j.petrol.2014.10.013

[40] Habrioux M., Nasri D., Daridon L. Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors. J. Chem. Thermodyn., 2018, vol. 120, pp. 1--12. DOI: https://doi.org/10.1016/j.jct.2017.12.020

[41] Tay W.J., Trusler J.P.M. Density, sound speed and derived thermophysical properties of n-nonane at temperatures between (283.15 and 473.15) K and at pressures up to 390 MPa. J. Chem. Thermodyn., 2018, vol. 124, pp. 107--122. DOI: https://doi.org/10.1016/j.jct.2018.04.019

[42] Dhakal S., Tay W.J., Saif al-Ghafri Z.S., et al. Thermodynamic properties of liquid toluene from speed-of-sound measurements at temperatures from 283.15 K to 473.15 K and at pressures up to 390 MPa. Int. J. of Thermophys., 2021, vol. 42, no. 12, art. 169. DOI: https://doi.org/10.1007/s10765-021-02917-7

[43] Catania A.E., Ferrari A., Spessa E. Temperature variations in the simulation of high pressure injection-system transient flows under cavitation. Int. J. Heat Mass Transf., 2008, vol. 51, no. 7-8, pp. 2090--2107. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.032

[44] Ndiaye E.H.I., Bazile J.P., Nasri D., et al. High pressure thermophysical characterization of fuel used for testing and calibrating diesel injection systems. Fuel, 2012, vol. 98, pp. 288--294. DOI: https://doi.org/10.1016/j.fuel.2012.04.005

[45] Lowe A.R., Jasiok B., Melent’ev V.V., et al. High-temperature and high-pressure thermophysical property measurements and thermodynamic modelling of an international oil standard: RAVENOL diesel rail injector calibration fluid. Fuel Process. Technol., 2020, vol. 199, art. 106220. DOI: https://doi.org/10.1016/j.fuproc.2019.106220

[46] Chorazewski M., Dergal F., Sawaya T., et al. Thermophysical properties of Nor-mafluid (ISO 4113) over wide pressure and temperature ranges. Fuel, 2013, vol. 105, pp. 440--450. DOI: https://doi.org/10.1016/j.fuel.2012.05.059

[47] Freitas S.V.D., Santos A., Moita M.-L.C.J., et al. Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels. Fuel, 2013, vol. 108, pp. 840--845. DOI: https://doi.org/10.1016/j.fuel.2013.02.041

[48] Lin C.W., Trusler J.P.M. The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa. J. Chem. Phys., 2012, vol. 136, no. 9, art. 094511. DOI: https://doi.org/10.1063/1.3688054

[49] Shchamialiou A.P., Samuilov V.S., Mosbakh F.M., et al. Densities, speed of sound, and derived thermodynamic properties of toluene, tetradecane, and 1-chlorohexane in the compressed liquid region. Fluid Phase Equilib., 2020, vol. 207, art. 112427. DOI: https://doi.org/10.1016/j.fluid.2019.112427

[50] Peleties F., Segovia J.J., Trusler J.P.M., et al. Thermodynamic properties and equation of state of liquid di-isodecyl phthalate at temperature between (273 and 423) K and at pressures up to 140 MPa. J. Chem. Thermodyn., 2010, vol. 42, no. 5, pp. 631--639. DOI: https://doi.org/10.1016/j.jct.2009.12.002

[51] Grekhov L.V., Gabitov I.I., Negovora A.V. Konstruktsiya, raschet i tekhnicheskiy servis toplivopodayushchikh sistem dizeley [Design, calculation and technical maintenance of diesel fuel delivery systems]. Moscow, Legion-Avtodata Publ., 2013.

[52] Fomin Yu.Ya. Toplivnaya apparatura sudovykh dizeley [Fuel equipment of ship diesel engines]. Moscow, Transport Publ., 1966.