Investigating High-Temperature Gaseous and Salt Corrosion Resistance of a Heat-Resistant Intermetallic Titanium Alloy VTI-4 (ВТИ-4)

Authors: Shubin I.Yu., Nikitin Ya.Yu., Puchkov Yu.A., Alekseev E.B., Davydova E.A. Published: 24.12.2020
Published in issue: #6(135)/2020  

DOI: 10.18698/0236-3941-2020-6-83-105

Category: Mechanical Engineering and Machine Science | Chapter: Machines, Units and Technological Processes  
Keywords: heat-resistant alloys, ortho-rhombic intermetallic titanium alloys, high-temperature gase-ous and salt corrosion, destruction

We investigated high-temperature gaseous and salt corrosion resistance of heat-resistant intermetallic titanium VTI-4 (ВТИ-4) alloy samples by conducting accelerated cyclic laboratory testing in air, in a NaCl environment, and in a mixture of Na2SO4 and NaCl. While testing the VTI-4 (ВТИ-4) alloy in air, we observed corrosion of a chemical nature and pseudo-parabolic specific mass variation kinetics. After cyclic testing in a NaCl environment at 700 °C the surface of the VTI-4 (ВТИ-4) alloy was covered by a film consisting of two layers: a mixture of Al2O3 and (Ti, Nb)O2 oxides, and a (Ti, Nb)O2 layer. In a NaCl + Na2SO4 environment at temperatures of 650 and 700 °C a liquid ion conductor film may manifest on the alloy surface alongside the oxides, while corrosion becomes predominantly electrochemical, of the pitting type. Globular orthorhombic phase particles initiate the pitting process. We detected that the pit depth in the alloy after testing in a Na2SO4 + NaCl environment at 650 and 700 °C is twice that obtained in NaCl at 700 °C. At the temperatures of 650 °C in Na2SO4 + NaCl and 700 °C in NaCl and Na2SO4 + NaCl environments the specific mass variation becomes negative, which is due to the oxide film peeling and shedding as temperatures change. The corrosion rate for the VTI-4 (ВТИ-4) alloy in the Na2SO4 + NaCl environment at 650 °C is lower than those for the nickel alloys VV751P (ВВ751П) and VZh175-ID (ВЖ175-ИД)


[1] Kablov E.N. Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2012, no. S, pp. 7--17 (in Russ.).

[2] Kablov E.N. What to make future of? New generation of materials, technologies for their production and recycling --- innovation basis. Krylʼya Rodiny [Wings of Motherland], 2016, no. 5, pp. 8--18 (in Russ.).

[3] Kablov E.N. VIAM: new generation materials for PD-14. Krylʼya Rodiny [Wings of Motherland], 2019, no. 7-8, pp. 54--58 (in Russ.).

[4] Kablov E.N., ed. Intermetallidnye splavy na osnove titana i nikelya [Intermetallide alloys based on titanium and nickel]. Moscow, VIAM Publ., 2018.

[5] Kablov E.N., Nochovnaya N.A., Panin P.V., et al. Study of structure and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives. Materialovedenie, 2017, no. 3, pp. 3--10 (in Russ.).

[6] Alekseev E.B., Nochovnaya N.A., Panin P.V., et al. Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. Aluminum. Trudy VIAM [Proceedings of VIAM], 2015, no. 12 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2015-0-12-8-8

[7] Kashapov O.S., Novak A.V., Nochovnaya N.A., et al. State, problems and prospects of heat-resistant titanium alloys for GTE parts. Trudy VIAM [Proceedings of VIAM], 2013, no. 3 (in Russ.). Available at: http://viam-works.ru/ru/articles?art_id=20

[8] Novak A.V., Alekseev E.B., Ivanov V.I., et al. The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4. Trudy VIAM [Proceedings of VIAM], 2018, no. 2 (in Russ.).DOI: https://doi.org/10.18577/2307-6046-2018-0-2-5-5

[9] Alekseev E.B., Nochovnaya N.A., Novak A.V., et al. Wrought intermetallic titanium ortho alloy doped with yttrium. Part 1. Research on ingot microstructure and rheological curves plotting. Trudy VIAM [Proceedings of VIAM], 2018, no. 6 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2018-0-6-12-21

[10] Dzunovich D.A., Alekseev E.B., Panin P.V., et al. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2018, no. 2, pp. 17--25 (in Russ.).

[11] Berdovsky Ya.N., ed. Intermetallics Research Progress. NY-USA, Nova Science Publishers. Inc., 2008.

[12] Clemens H., Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater., 2013, vol. 15, no. 4, pp. 191--215. DOI: https://doi.org/10.1002/adem.201200231

[13] Kim Y.W., Kim S.L. Keynote lecture at Gammalloys technology 2017. GAT, 2017, vol. 10, pp. 220--250.

[14] Zakharova L.V. Influence of air oxygen and thickness of salt deposits on corrosion cracking of titanium alloys at high temperatures in contact with NaCl. Trudy VIAM [Proceedings of VIAM], 2014, no. 10 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2014-0-10-12-12

[15] Zakharova L.V. Anodic oxide coating --- protection of titanium alloys against hot salt corrosion. Trudy VIAM [Proceedings of VIAM], 2015, no. 10 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2015-0-10-2-2

[16] Medvedev I.M., Nikitin Ya.Yu., Puzanov A.I., et al. Study of changes in the heat-resistant alloy coating structure after heat resistance tests. Trudy VIAM [Proceedings of VIAM], 2018, no. 11 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2018-0-11-93-100

[17] Zakharova L.V. Influence of chemical composition, thermal treatment and structure on cracking sensitivity of titanium alloys to hot-salt stress corrosion. Trudy VIAM [Proceedings of VIAM], 2016, no. 9 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2016-0-9-11-11

[18] Godlewska E., Mitoraj M., Leszczynska K. Hot corrosion of Ti--46Al--8Ta (at. %) intermetallic alloy. Corros. Sc., 2014, vol. 78, pp. 63--70. DOI: https://doi.org/10.1016/j.corsci.2013.08.032

[19] Yao Z., Marek M., NaCl-induced hot corrosion of a titanium aluminide alloy. Mat. Sc. Eng. A, 1995, vol. 192-193, pp. 994--1000. DOI: https://doi.org/10.1016/0921-5093(95)03345-9

[20] Basuki E., Mohammad F., Fauzi A., et al. Hot corrosion of aluminide coated Ti--Al--Cr--Nb--Zr--Y intermetallic alloys. Adv. Mat. Res., 2007, vol. 1112, pp. 363--366. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1112.363

[21] Zhao W., Xu B., Ma Y., et al. Inter-phase selective corrosion of γ-TiAl alloy in molten salt environment at high temperature. Prog. Nat. Sc., 2011, vol. 21, no. 4, pp. 322--329. DOI: https://doi.org/10.1016/S1002-0071(12)60064-1

[22] Qian Y., Li X., Li M., et al. Hot corrosion of modified Ti3Al-based alloy coated with thin Na2SO4 film at 910 and 950 °C in air. Trans. Nonferrous Met. Soc. China, 2017, vol. 27, no. 4, pp. 954−961. DOI: https://doi.org/10.1016/S1003-6326(17)60111-0

[23] Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modelling in high-temperature non-organic systems]. Moscow, Metallurgiya Publ., 1994.

[24] Xiang J.M., Mi G.B., Qu S.J., et al. Thermodynamic and microstructural study of Ti2AlNb oxides at 800 °C. Sc. Rep., 2018, vol. 8, art. 12761. DOI: https://doi.org/10.1038/s41598-018-31196-w

[25] Choudhury N.S., Graham H.C., Hinze J.W. Properties of high temperature alloys with emphasis on environmental effects. Proc. Symp. Properties of High Temperature Alloys. The Electrochemical Society, 1976, pp. 668--680.

[26] Shida Y., Anada H. Role of W, Mo, Nb and Si on oxidation of TiAl in air at high temperatures. Mater. Trans., 1994, vol. 35, no. 9, pp. 623--631. DOI: https://doi.org/10.2320/matertrans1989.35.623