|

A Similarity Solution to the Heat Transfer Problem for an Isotropic Half-Space Featuring a Film-Coated Moving Boundary

Authors: Attetkov A.V., Vlasov P.A., Volkov I.K. Published: 14.09.2017
Published in issue: #5(116)/2017  

DOI: 10.18698/0236-3941-2017-5-89-97

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: thermally thin coating, unsteady heat transfer, temperature field, similarity solution, isotropic half-space with a moving boundary

The study considers the problem of determining a temperature field in an isotropic half-space the boundary of which moves according to a given law and features a film coating. We investigated unsteady heat transfer in a system consisting of a solid, a coating and a gas, with both the heat transfer coefficient and ambient temperature being time-dependent. We determine sufficient conditions meeting which ensures the possibility of self-similar heat transfer process taking place in the system under consideration. We qualitatively investigated physical properties of the self-similar process under study. We provide a theoretical validation of implementing a thermostatting mode in the moving boundary of the object investigated

References

[1] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Clarendon Press, 1986. 510 p. (Russ. ed.: Teploprovodnost tverdykh tel. Moscow, Nauka Publ., 1964. 488p.).

[2] Lykov A.V. Teoriya teploprovodnosti [Heat conduction theory]. Moscow, Vysshaya shkola Publ., 1967. 600 p.

[3] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in theory of heat conduction in solids]. Moscow, Vysshaya shkola Publ., 2001. 550 p.

[4] Pudovkin M.A., Volkov I.K. Kraevye zadachi matematicheskoy teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh poley v neftyanykh plastakh pri zavodnenii [Boundary problems of heat conduction mathematical theory in application to temperature field calculation in oil reservoir in condition of waterflooding]. Kazan, Izdatelstvo Kazanskogo universiteta, 1978. 188 p.

[5] Kartashov E.M., Kudinov V.A. Analiticheskaya teoriya teploprovodnosti i prikladnoy termouprugosti [Analytical theory of thermal conductivity and applied thermal elasticity]. Moscow, URSS Publ., 2012. 653 p.

[6] Formalev V.F. Teploprovodnost anizotropnykh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods of problem solving]. Moscow, Fizmatlit Publ., 2014. 312 p.

[7] Kartashov E.M. Analytical methods of solution of boundary-value problems of nonstationary heat conduction in regions with moving boundaries. Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 2, pp. 498–536. DOI: 10.1023/A:1016641613982 Available at: https://link.springer.com/article/10.1023/A%3A1016641613982

[8] Attetkov A.V., Volkov I.K. Mathematical simulation of heat transfer processes in the region with moving boundary under conditions of nonstationary heat exchange with surround-dings. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sc.], 1999, no. 1, pp. 37–45 (in Russ.).

[9] Attetkov A.V., Vlasov P.A., Volkov I.K. Temperature field of a half-space with a thermally thin coating in pulse modes of heat exchange with the environment. Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 3, pp. 647–655. DOI: 10.1023/A:1016756227188 Available at: https://link.springer.com/article/10.1023/A%3A1016756227188

[10] Attetkov A.V., Vlasov P.A., Volkov I.K. Influence of the mobility of a boundary on the temperature field of a half-space under unstable conditions of heat exchange with the environment. Journal of Engineering Physics and Thermophysics, 2002, vol. 75, no. 6, pp. 1454–1462. DOI: 10.1023/A:1022143716313 Available at: https://link.springer.com/article/10.1023/A%3A1022143716313

[11] Kartashov E.M. Thermal conductivity at variable in time relative to the heat transfer coefficient. Izvestiya RAN. Energetika [Proceedings of RAS. Power Engineering], 2015, no. 2, pp. 138–149 (in Russ.).

[12] Attetkov A.V., Volkov I.K. Temperature field of the anisotropic half-space, which mobile boundary contains the film coating. Izvestiya RAN. Energetika [Proceedings of RAS. Power Engineering], 2015, no. 3, pp. 39–49 (in Russ.).

[13] Tebyakin V.M. Adiabatic detonator development for tubing conveyed perforating gun PKT 105. Vskrytie neftegazovykh plastov i osvoenie skvazhin: Tez. dokl. II Vsesoyuznoy nauchno-tekhnicheskoy konf. [Drilling in and Well Development: Abs. II Russ. Sci.-Tech. Conf.]. Moscow, 1988. Pp. 141–142 (in Russ.).

[14] Zeldovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of shock waves and high temperature hydrodynamic phenomena]. Moscow, Nauka Publ., 1966. 688 p.

[15] Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilineynykh parabolicheskikh uravneniy [Blow-up regimes in problems for quasilinear parabolic equations]. Moscow, Nauka Publ., 1987. 480 p.

[16] Volosevich P.P., Levanov E.I. Avtomodelnye resheniya zadach gazovoy dinamiki i teploperenosa [Self-similar solutions of gas dynamics and heat transfer problems]. Moscow, MIPT Publ., 1997. 240 p.

[17] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N. Lineynye i kvazilineynye uravneniya parabolicheskogo tipa [Linear and quasilinear equations of parabolic type]. Moscow, Nauka Publ., 1967. 736 p.

[18] Zaytsev V.F., Polyanin A.D. Spravochnik po nelineynym differentsialnym uravneniyam: prilozheniya v mekhanike; tochnye resheniya [Handbook on nonlinear differential equations: application in mechanics: exact solutions]. Moscow, Fizmatlit Publ., 1993. 464 p.