Optimization Option for an Elliptical Shell of the Variable Thickness
Authors: Bondarev I.D., Fedorov L.V. | Published: 15.07.2025 |
Published in issue: #2(153)/2025 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture | |
Keywords: revolving elliptic shell, optimization, local minimum, finite element method, strength, stability |
Abstract
The paper considers a problem of optimization of the revolving elliptical shell of the variable thickness loaded with external pressure taking into account the design and technological limitations. It presents a solution option based on combination of the well-known numerical methods including an algorithm for finding the local minimum of a certain function and the finite element method that determines this function by the specified criteria. The presented approach is applicable to solving this problem, since it is used for a wide range of practical problems in design optimization, when it is impossible to obtain analytical expressions convenient for the design. In this case, no restrictions are assumed in implementing the algorithm for finding the function minimum, the finite element method, and the software that connects them. A comparative analysis of the obtained results is performed depending on the initial position in space of the parameters and settings of the presented algorithm. Two options are considered as the initial parameters. In the first, the pole thickness obtained from the stability conditions is applied as the initial position in the parameter space. In the second, the maximum thickness obtained from the strength condition for the equivalent stresses is used. The paper shows that using the equivalent stress and critical load constraints as the first approximations separately from each other leads to similar results
Please cite this article in English as:
Bondarev I.D., Fedorov L.V. Optimization option for an elliptical shell of the variable thickness. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2025, no. 2 (153), pp. 20--31 (in Russ.). EDN: NUAOWM
References
[1] Kosykh P.A., Azarov A.V. Theory and analysis of the topology optimization methods. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2023, no. 4 (in Russ.). DOI: https://doi.org/10.18698/2308-6033-2023-4-2264
[2] Kishov E.A., Komarov V.A. Topology optimization of a load-bearing structure via the method of convex linearization. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2018, vol. 17, no. 1, pp. 137--149 (in Russ.). DOI: https://doi.org/10.18287/2541-7533-2018-17-1-137-149
[3] Korshunov V.A., Ponomarev D.A., Rodionov A.A. Up-to-date methodology for optimization of structural force diagrams. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra [Transactions of the Krylov State Research Centre], 2020, no. S1, pp. 73--81 (in Russ.). EDN: PQLCJZ
[4] Sorokin D.V., Babkina L.A., Brazgovka O.V. Designing various-purpose subassemblies based on topological optimization. Kosmicheskie apparaty i tekhnologii [Spacecrafts & Technologies], 2022, vol. 6, no. 2, pp. 61--82 (in Russ.). DOI: https://doi.org/10.26732/j.st.2022.2.01
[5] Magidov I.S., Mikhaylovskiy K.V. Topological optimization of the strength element of the aircraft compartment made of metal-matrix composite material. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 1, pp. 53--60 (in Russ.). DOI: https://doi.org/10.18698/0536-1044-2022-1-53-60
[6] Egorychev V.S., Ryazanov A.I., Khaymovich A.I. Optimization of operation mode and design parameters of a finely-dispersed metallic liquid-alloy generator. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2023, no. 1, pp. 63--74 (in Russ.). DOI: https://doi.org/10.18287/2541-7533-2023-22-1-63-74
[7] Bashin K.A., Torsunov R.A., Semenov S.V. Topology optimization methods in aerospace industry. Vestnik PNIPU, Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2017, no. 51, pp. 51--61 (in Russ.). DOI: https://doi.org/10.15593/2224-9982/2017.51.05
[8] Galinovskiy A.L., Filimonov A.S., Badanina Yu.V., et al. Comparative correlation study of software systems for three-dimensional numerical simulation by analyzing results of the RST product topological optimization. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 1, pp. 42--51 (in Russ.). DOI: http://dx.doi.org/10.18698/0536-1044-2023-1-42-51
[9] Maksimov P.V., Fetisov K.V. The analysis of methods of refinement of the finite element model after topology optimization. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal [International Research Journal], 2016, no. 9, pp. 58--60 (in Russ.). DOI: https://doi.org/10.18454/IRJ.2016.51.102
[10] Kovalev S.P., Shaymardanov M.Yu. Methods of applying manufacturing constraints in topology optimization. Informatsionnye tekhnologii [Information Technologies], 2018, vol. 24, no. 2, pp. 75--80 (in Russ.). EDN: YPOXXW
[11] Razin A.F. The problem of optimum design of composite housings of solid propellant rocket engines. Mech. Solids, 2018, vol. 53, no. 4, pp. 418--426. DOI: https://doi.org/10.3103/S0025654418040076
[12] Azarov A.V. The problem of designing aerospace mesh composite structures. Mech. Solids, 2018, vol. 53, no. 4, pp. 427--434. DOI: https://doi.org/10.3103/S0025654418040088
[13] Yudin A.S., Shchitov D.V. On calculation of elliptical rotation shells loaded with internal pressure. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Ser. Estestvennye nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences], 2004, no. S3, pp. 29--36 (in Russ.). EDN: HSOTND
[14] Sukharev V.A., Zavaliy A.A. The stress-strain state of shells of revolution. Izvestiya selskokhozyaystvennoy nauki Tavridy [Transactions of Taurida Agricultural Science], 2018, no. 16, pp. 73--81 (in Russ.). EDN: YTUKAP
[15] Pogorelov A.V. Geometricheskaya teoriya ustoychivosti obolochek [Geometric theory of shell stabillity]. Moscow, Nauka Publ., 1966.
[16] Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek [General theory of anisotropic shells]. Moscow, Nauka Publ., 1974.
[17] Volmir A.S. Ustoychivost deformiruemykh system [Buckling of deformable systems]. Moscow, Nauka Publ., 1967.
[18] Vlasov V.Z. Izbrannye trudy. T. 1 [Selected works. Vol. 1]. Moscow, AN SSSR Publ., 1962.
[19] Vekua I.N. Teoriya tonkikh pologikh obolochek peremennoy tolshchiny [Theory of thin shallow shells of variable thickness]. Tbilisi, Metsinreba Publ., 1965.
[20] Wilde D.J. Optimum seeking methods. Hoboken, Prentice-Hall, 1965.