ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». 2016. № 3
129
2.
Зарубин В.С., Кувыркин Г.Н., Савельева И.Ю.
Сравнительный анализ оценок
модулей упругости композита. Ч. 2: Анизотропные шаровые включения //
Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2014. № 6 (99).
С. 31–43.
3.
Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С.
К описанию многослойных
нанотрубок в рамках моделей цилиндрически анизотропной упругости //
Физическая мезомеханика. 2009. Т. 12. № 5. С. 5–14.
4.
Frank O., Geim A., Novoselov K., Galiotis C.
Development of a universal stress
sensor for graphene and carbon fibres // Nature Communications. 2011. Vol. 2.
P. 1–7.
5.
Subjecting
a graphene monolayer to tension and compression / G. Tsoukleri,
J. Parthenios, K. Papagelis, R. Jalil, A.C. Ferrari, A.K. Geim, K.S. Novoselov,
C. Galiotis
// Small. 2009. No. 2. P. 2397–2402.
6.
Лехницкий С.Г.
Теория упругости анизотропного тела. М.: Наука,1977. 416 с.
7.
Sidorov O.V.
Effective moduli of MWCNT and carbon nanofibers based on gra-
phenes: continuum approach // Int. Conf. on Theoretical Physics DUBNA-
NANO2012. Dubna, July 9–14, 2012. Book of Abstracts. Joint Inst. for Nuclear
Research. Bogoliubov Laboratory of Theoretical Physics. 2012. P. 113.
8.
Зарубин В.С., Сергеева Е.С.
Исследование связи упругих характеристик одно-
слойной углеродной нанотрубки и графена // Вестник МГТУ им. Н.Э. Баумана.
Сер. Естественные науки. 2016. № 1. С. 100–110.
DOI: 18698/1812-3368-2016-1-100-110
9.
Seldin E.J., Nezbeda C.W.
Elastic constant and electron-microscope observations of
neutron-irradiated compression annealed pyrolytic and single-crystal graphite //
J. Appl. Phys. 1970. Vol.41, P. 3389–3400.
REFERENCES
[1] Zarubin V.S., Kuvyrkin G.N., Savelieva
I.Yu. Comparative Analysis Estimates of
Elastic Moduli for Composite. Part 1. Isotropic Spherical Inclusions.
Vestn. Mosk.
Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.
[Herald of the Bauman Moscow
State Tech. Univ., Mech. Eng.], 2014, no. 5, pp. 53–69 (in Russ.).
[2] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Y. Comparative Analysis Modulus Elas-
ticity Estimates for Composite. Part 2. Anisotropic Spherical Inclusions.
Vestn.
Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.
[Herald of the Bauman
Moscow State Tech. Univ., Mech. Eng.], 2014, no. 6, pp. 31–43 (in Russ.).
[3] Gol'dshteyn R.V., Gorodtsov V.A., Lisovenko D.S. To the description of multi-
layer nanotubes in models of cylindrically anisotropic elasticity.
Fiz. mezomekh
.
[Physical Mesomechanics], 2009, vol. 12, no. 5, pp. 5–14 (in Russ.).
[4] Frank O., Geim A., Novoselov K., Galiotis C. Development of a universal stress
sensor for graphene and carbon fibres.
Nature Communications
, 2011, vol. 2,
pp. 1–7.
[5] Tsoukleri G., Parthenios J., Papagelis K., Jalil R., Ferrari A.C., Geim A.K., Novo-
selov K.S., Galiotis C. Subjecting a graphene monolayer to tension and compres-
sion.
Small
, 2009, no. 2, pp. 2397–2402.
[6] Lekhnitskii S.G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of an
anisotropic body]. N.Y., Holden-Day, 1963. 404 p.
[7] Sidorov O.V. Effective Moduli of MWCNT and Carbon Nanofibers based on Gra-
phenes: Continuum Approach
. Int. Conf. on Theoretical Physics DUBNA-
NANO2012
, Dubna, July 9–14, 2012. Book of Abstracts, Joint Inst. for Nuclear
Research, Bogoliubov Laboratory of Theoretical Physics, 2012, p. 113.
[8] Zarubin V.S., Sergeeva E.S. Investigation of the relationship between elastic prop-
erties of single-walled carbon nanotubes and graphene.
Vestn. MGTU
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech.
Univ., Nat. Sci.], 2016, no 1, pp. 100–110 (in Russ.).
DOI: 18698/1812-3368-2016-1-100-110