|

Estimates of Effective Thermal-Conductivity Coefficient of the Composite Having an Intermediate Layer between the Fiber and Matrix

Authors: Zarubin V.S., Kuvyrkin G.N., Savelieva I.Yu. Published: 06.02.2014
Published in issue: #1(94)/2014  

DOI:

 
Category: Simulation of Processes  
Keywords: composite, fiber, intermediate layer, effective thermal conductivity coefficient

A mathematical model of heat transfer in a composite reinforced with long anisotropic fibers oriented in one direction is built. A possibility of arising of an intermediate layer between the fibers and matrix is taken into consideration. Based on this model, formulas are derived for calculation of effective thermal-conductivity coefficients of this composite in the fiber direction and in the plane perpendicular to this direction. The dual variational formulation of the stationary heat conduction problem was applied for performing the double-ended estimates of a probable value of the second coefficient. The results can be used for predicting the effective thermal conductivity of fiber composites.

References

[1] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Winding technology for composite structures of missiles and weapons]. Moscow, MGTU im. M. E. Baumana Publ., 2011. 432 p.

[2] Lubin G. Handbook of composites. New York, Van Nostrand Reinhold, 1982. 786 p. (Russ. ed.: Liubin D. Spravochnik po kompozitsionnym materialam. Moscow, Mashinostroenie Publ., 1988. 488 p. (vol. 1), 584 p. (vol. 2)).

[3] Broutman L.J., Krock R.H. Plueddemann E.P., eds. Composite materials. Vol. 6. Interfaces in polymer matrix composites. Academic Press, 1974. 294 p. (Russ. ed.: Brautman L., Krok R., Plyudeman E. Kompozitsionnye materialy. Tom 6. Poverkhnosti razdela v polimernykh kompozitakh. Moscow, Mir Publ., 1978, 294 p.).

[4] Metcalfe A.G. Interfaces in metal matrix composites. Academic Press, 1974. 421 p. (Russ. ed.: Metkalf A. Poverkhnosti razdela v metallicheskikh kompozitakh. Mocow, Mir Publ., 1978. 440 p.).

[5] Tsoy B., Kartashov E.M., Shevelev V.V., Valishin A.A. Razrushenie tonkikh plenok i volokon [The destruction of thin films and fibers]. Moscow, Khimiya Publ., 1977. 344 p.

[6] Trofimov N.N., Kanovich M.Z., Kartashov E.M., Natrusov V.I., Ponomarenko A.T., Shevchenko V.G., Sokolov V.I., Simonov-Emelyanov I.D., eds. Fizika kompozitsionnykh materialov [Physics of composite materials]. In 2 volumes. Moscow, Mir Publ., 2005. 456 p. (vol. 1), 344 p. (vol. 2).

[7] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro-inhomogeneous media]. Moscow, Nauka Publ., 1977. 400 p.

[8] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. The mixture models of the mechanics of composites. Part 1. Thermomechanics and thermoelasticity of a multicomponent mixture. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2009, no. 3, pp. 36-49.

[9] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The effective thermal conductivity of composite with inclusions a prolate ellipsoid of revolution. Teplovye protsessy v tekhnike [Therm. process. in engineering], 2013, vol. 5, no. 6, pp. 276-282.

[10] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Thermal conductivity of composite reinforced with fibers. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 2013, no. 5, pp. 75-81.

[11] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving problems of heat conduction]. Moscow, Energoatomizdat Publ., 1983. 328 p.

[12] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, MGTU im.N.E. Baumana Publ., 2008. 512p.