|

Mathematical Model of the Universal Modeling Method Version 9 for the Calculation and Design of Centrifugal Compressors: Identification and Verification from Experimental Data

Authors: Galerkin Yu.B., Drozdov А.А., Rekstin A.F., Solovyeva О.А., Marenina L.N. Published: 03.04.2022
Published in issue: #1(140)/2022  

DOI: 10.18698/0236-3941-2022-1-82-102

 
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems  
Keywords: centrifugal compressor, mathematical model, identification, efficiency, theoretical head factor, impeller

Abstract

Identification and verification of a new version of mathematical model for universal modeling method for calculation of centrifugal compressors gas dynamic characteristics are carried out. To identify the loss model, the results of 70 tests of 20SE family model stages at LPI-SPbPU Compressor Engineering Problem Laboratory were used. A total of 420 efficiency values were compared. At the first stage, identification was carried out only for stages without a vane diffuser; the average error of efficiency calculation was 0.513 %, and, on the whole, for the characteristic is 1 %. When identifying vane diffuser stages, the search objects were coefficients influencing losses in the vane diffuser only, the average error of efficiency calculation was 0.525 %, for the whole characteristic is 1.12 %. To verify the empirical coefficients affecting losses in the axial separation impeller, test results of TKR-175E and TKR-140E compressors for turbocharger units were used. In the IDENT database we gave characteristics of TKR-140E compressor at conditional Mach numbers 0.437, 0.5836, 0.728, 0.8739; average error of efficiency calculation was 0.889 %, for the whole characteristic is 1.55 %. To verify the mathematical model, the results of the tests of Clark (USA) low-flow model stages were used. Ten tests of low-flow stages were considered; the average error of efficiency calculation was 1.08 %, for the whole characteristic is 1.31 %

This study was supported by the grant of the President of the Russian Federation for young candidates of sciences МK-1893.2020.8

Please cite this article in English as:

Galerkin Yu.B., Drozdov A.A., Rekstin A.F., et al. Mathematical model of the universal modeling method version 9 for the calculation and design of centrifugal compressors: identification and verification from experimental data. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 1 (140), pp. 82--102 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-1-82-102

References

[1] Swain E. Improving a one-dimensional centrifugal compressor performance prediction method. Proc. Inst. Mech. Eng. A: J. Power Energy, 2005, vol. 2019, no. 8, pp. 653--659. DOI: https://doi.org/10.1243/095765005X31351

[2] Oh H.W., Yoon E.S., Chung M.K. An optimum set of loss models for performance prediction of centrifugal compressors. Proc. Inst. Mech. Eng. A: J. Power Energy, 1997, vol. 211, no. 4, pp. 331--338. DOI: https://doi.org/10.1243/0957650971537231

[3] Afanas’yev B.V., Drozdov Yu.V., Lunev A.T., et al. Research methods of multishaft multistage compressors using a mathematical model in the design process. Kompressornaya tekhnika i pnevmatika, 2002, no. 1, pp. 21--23 (in Russ.).

[4] Syka T., Luňáček O. Numerical simulation of radial compressor stage. EPJ Web Conf., 2013, vol. 45, art. 01088. DOI: https://doi.org/10.1051/epjconf/20134501088

[5] De Bellis F., Grimaldi A., Rubino D.T., et al. Accurate radial vaneless diffuser 1D model. Proc. ASME Turbo Expo, 2014, no. GT2014-25232, V02DT42A008. DOI: https://doi.org/10.1115/GT2014-25232

[6] Harley P., Spence S., Filsinger D., et al. Assessing 1D loss models for the off-design performance prediction of automotive turbocharger compressors. Proc. ASME Turbo Expo, 2013, no. GT2013-94262, V06CT40A005. DOI: https://doi.org/10.1115/GT2013-94262

[7] Japikse D. Turbomachinery design with an agile engineering system. JSME Fluid Eng. Conf., 2003, pp. 19--20.

[8] Japikse D., Bitter J. Effective two-zone modeling of diffusers and return channel systems for radial and mixed-flow pumps and compressors. 11th Int. Symp. Transport Phenomena and Dynamics of Rotating Machinery, 2006, vol. 2, pp. 511--520.

[9] Japiksе D., Oliphant K.N., Pelton R. Optimization in turbomachinery data reduction. 10th Int. Symp. Transport Phenomena and Dynamics of Rotating Machinery, 2004, pp. 73--82.

[10] Japikse D., Platt M.J. Optimization in component design and redesign. 10th Int. Symp. Transport Phenomena and Dynamics of Rotating Machinery, 2004, pp. 132--145.

[11] Li P.Y., Gu C.W., Song Y. A new optimization method for centrifugal compressors based on 1D calculations and analyses. Energies, 2015, vol. 8, no. 5, pp. 4317--4334. DOI: https://doi.org/10.3390/en8054317

[12] Lusardi K. Characterization of unsteady loading due to impeller-diffuser interaction in centrifugal compressors. Thes. Mast. Sc. Deg. USA, Cambri, MIT, 2012.

[13] Galerkin Yu.B., Soldatova K.V. Modelirovanie rabochego protsessa promyshlennykh tsentrobezhnykh kompressorov. [Modeling workflow of industrial centrifugal compressors]. St. Petersburg., SPbPU Publ., 2011.

[14] Vasil’yev Yu.S., Rodionov P.I., Sokolovskiy M.I. New generation of highly efficient centrifugal compressors. Scientific bases for calculation, development of methods for optimal design and production development. Promyshlennost’ Rossii, 2000, no. 10-11, pp. 78--85 (in Russ.).

[15] Galerkin Yu.B., Rekstin A.F., Drozdov A.A., et al. [End-to-end system for optimal gas-dynamic design of industrial centrifugal compressors]. Nauchnye osnovy, praktika primeneniya. XVIII Mezhdunar. nauch.-tekh. konf. [Scientific Foundations, Application Practice. XVIII Int. Sc.-Tech. Conf.]. Kazan, 2019, pp. 15--46 (in Russ.).

[16] Soldatova K.V. Sozdanie novoy matematicheskoy modeli protochnoy chasti tsentrobezhnykh kompressorov i bazy dannykh model’nykh stupeney. Dis. d-ra tekh. nauk. [Development of a new mathematical model of centrifugal compressors flow path and a database of model stages. Dr. Sc. (Eng.). Diss.]. St. Petersburg, SPbPU, 2017 (in Russ.).

[17] Drozdov A.A. Metod proektirovaniya tsentrobezhnykh kompressorov s oseradial’nymi rabochimi kolesami. Dis. kand. tekh. nauk [Method of designing centrifugal compressors with axial radial impellers. Cand. Sc. (Eng.). Diss.]. St. Petersburg, SPbPU, 2016 (in Russ.).

[18] Solov’yeva O.A. Matematicheskaya model’ dlya rascheta gazodinamicheskikh kharakteristik i optimizatsii bezlopatochnykh diffuzorov tsentrobezhnykh kompressornykh stupeney. Dis. kand. tekh. nauk [Mathematical model for calculating gas-dynamic characteristics and optimization of vaneless diffusers of centrifugal compressor stages. Cand. Sc. (Eng.). Diss.]. St. Petersburg, SPbPU, 2018 (in Russ.).

[19] Galerkin Y., Drozdov A., Solovyeva O., et al. Development of mathematical model of universal modeling method for centrifugal compressors calculation. E3S Web Conf., vol. 140, art. 06002. DOI: https://doi.org/10.1051/e3sconf/201914006002

[20] Galerkin Yu.B. Turbokompressory [Turbocompressors]. St. Petersburg, SPbPU Publ., 2008.

[21] Galerkin Yu.B., ed. Trudy nauchnoy shkoly kompressorostroeniya SPbPU [Proceedings of SPbPU scientific school of compressor engineering]. St. Petersburg, SPbPU Publ., 2010.

[22] Galerkin Yu.B., Rekstin A.F. Metody issledovaniya tsentrobezhnykh kompressornykh mashin [Research methods for centrifugal compressor machines]. Leningrad, Mashinostroenie Publ., 1969.

[23] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnye kompressory [Centrifugal compressors]. Leningrad, Mashinostroenie Publ., 1982.

[24] Ris V.F. Tsentrobezhnye kompressornye mashiny [Centrifugal compressor machines]. Leningrad, Mashinostroenie Publ., 1981.

[25] Galerkin Yu.B., Drozdov A.A. New version of universal modeling method for centrifugal compressors calculation development. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering], 2019, vol. 3, no. 2, pp. 25--36 (in Russ.). DOI: https://doi.org/10.25206/2588-0373-2019-3-2-25-36

[26] Drozdov A.A., Galerkin Yu.B., Utsekhovskiy A.A. Development and implementation of a new mathematical model of the tangential exit nozzles in centrifugal compressors. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 6, pp. 17--35 (in Russ.).DOI: https://doi.org/10.18698/0536-1044-2020-6-17-35

[27] Galerkin Yu.B., Rekstin A.F., Drozdov A.A., et al. Design experience for low-pressure turbocharger based on the modern version of the universal modeling method. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2019, no. 2, pp. 2--10 (in Russ.).