On the choice of parameters of pulsed plasma process facility

Authors: Grishin Yu.M., Rydkin M.V., Yarikov S.A. Published: 02.09.2015
Published in issue: #4(103)/2015  

DOI: 10.18698/0236-3941-2015-4-86-99

Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing  
Keywords: pulsed plasma process facility, modification of surface layer properties, pulse plasma accelerator, calculation methods, electrodynamic model, parameters of capacity storage

The article describes the study of the influence of the basic electrical and geometrical parameters of a pulsed plasma accelerator of the second stage hybrid pulse-periodic plasma system under the atmospheric pressure on the parameters of generated high-powered pulsed plasma formation. Investigation of the processes at the stage of pulsed high-current discharge was carried out on the basis of an electrodynamic approximation equation system. Numerical simulations are performed and characteristics of the plasma formation acceleration in the channel of the pulsed plasma accelerator are obtained. The relationship between the basic electrical and geometrical parameters of the pulsed plasma accelerator and the speed of the plasma formation is shown. The basic guidelines for choosing a scheme of the capacitive storage for the pulsed plasma accelerator are defined. It is shown that for the double-stage pulse-periodic plasma system under the atmospheric pressure one or two-circuits LC capacitive storage is optimal. The main parameters of the developed technological systems, ensuring generating plasma formations with the speed of 5-6 km/s, are determined.


[1] Garkusha I.E., Derepovskiy N.T., Kazakov O.E. Modification of Structural and Tool Materials under Plasma Flow Irradiation. Voprosy atomnoy nauki i tekhniki [Problems of Atomic Science and Technology], 1997, pp. 172-175 (in Russ.).

[2] Usuba S., Heimann R.B. J. Thermal Spray Technol., 2006, vol. 15 (3), pp. 356-364.

[3] Ovchinnikov P.A., Opekan A.G., Protasov Yu.S., Kamrukov A.S. Radiatsionnaya plazmodinamika. T. 1 [RadiationPlasmodynamics, vol. 1]. Moscow, Energoatomizdat Publ., 1991, pp. 564-566.

[4] Kamrukov A.S., Denisov E., Kozlov N.P., Lushnikov E.A. Corrosion Prevention Treatment of Low Carbon Steel with Pulsed Plasma Flows. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" [El. Sc.-Tech. Publ. "Science and Education"], 2013, no. 12. http://technomag.bmstu.ru/doc/670510.html (accessed 20.11.2014).

[5] Grishin Y., Chivel Y., Bochkov V., Bochkov D., Suslov V., Vermel V. Proc. of Power Modulator and High Voltage Conference (IPMHVC), San Diego, CA, USA, 2012, pp. 215-217.

[6] Grishin Yu.M., Rydkin M.V. About Calculation of Plasma Parameters in the Technological Atmospheric-Pressure Pulse-Periodic Plasma System. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 3, pp. 38-51 (in Russ.).

[7] Aleksandrov V.V., Belan N.V., Kozlov N.P., Mashtylev N.A., Popov G.A., Protasov Yu.S., Khvesyuk V.I. Pulsed Plasma Accelerators. Khar’kov, Kharkiv Aviation Institute, 1983. 247 p.

[8] Lebedev A.D., Uryukov B.A. Pulsed High Pressure Plasma Accelerators. AN SSSR SO. Institut teplofiziki [Institute of Thermophysics]. Novosibirsk, 1990.

[9] Kolesnikov P.M. Elektrodinamicheskoe uskorenie plazmy [Electromagnetic plasma acceleration]. Moscow, Atomizdat Publ., 1971. 388 p.