|

Experience in Manufacturing Titanium Alloy Forgins in VIAM Plant Conditions

Authors: Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Lysov K.G. Published: 28.03.2021
Published in issue: #1(136)/2021  

DOI: 10.18698/0236-3941-2021-1-133-155

 
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing  
Keywords: titanium alloys, isothermal forging, microstructure, mechanical properties, thermomechanical treatment, calibration, double annealing

The purpose of the study was to reveal the effect of various technological aspects of manufacturing titanium alloy ВТ8 (VT8) forgings under isothermal conditions on a press with a force of 1600 kN. The starting material was OST 1 90266--86 and OST 1 90107--73 VT8 (ВТ8) alloy bars. For the forgings obtained from these rods, the score and background of the macrostructure, the type of microstructure, short-term strength, elongation, contraction and impact toughness at room temperature were determined. For forgings made from an OST 1 90266--86 bar, the effect of thermomechanical treatment on the level of properties was additionally evaluated, namely, half of the forging was recalibrated. The microstructure of the forgings which were made by thermomechanical treatment and aged was additionally investigated using scanning electron microscopy. Findings of research show a direct dependence of the quality of the final semi-finished product on the quality of the original bar. It has been established that lowering the punching temperature to the level of Tpp -- 150 °С leads to insufficient development of the structure of the deformed material over the cross section, and results in the presence of large grains from the initial bar. So, on forgings made from an OST 1 90266--86 bar, the following level of mechanical properties was achieved: σv ≥ 1000 MPa, δ ≥ 11 %, ψ ≥ 20 %, KCU ≥ 40.3 J / cm2

References

[1] Krymov V.V., ed. Proizvodstvo lopatok gazoturbinnykh dvigateley [Production of blades for gas-turbine engines]. Moscow, Mashinostroenie Publ., Polet Publ., 2002.

[2] Bolkhovitin M.S., Korolev N.N., Monakhova V.P. The improving the efficiency of management of technological processes in the manufacture of precision molded compressor blades of turbojet. Trudy MAI, 2015, no. 81, pp. 1--14 (in Russ.). Available at: http://trudymai.ru/published.php?ID=57824

[3] Anishchenko A.S. Analysis of alternative technologies for forging compressor blades of ship engines. Vіsnik Priazovskogo derzhavnogo tekhnіchnogo unіversitetu. Serіya: tekhnіchnі nauki [Reporter of the Priazovskyi State Technical University. Section: Technical Sciences], 2015, vol. 30, no. 1, pp. 141--148 (in Russ.).

[4] Botkin A.V., Varenik E.V., Abramov A.N. Computer design of imitation compressor blade isothermal forging. Vestnik MGTU im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2017, vol. 15, no. 2, pp. 40--47 (in Russ.). DOI: https:doi.org/10.18503/1995-2732-2017-15-2-40-47

[5] Burlakov I.A. Manufacturing of round and square hot-rolled bars of nickel and titanic alloy on the rolling mill "280--380ˮ. Izvestiya MGTU-MAMI, 2009, no. 1, pp. 109--111 (in Russ.).

[6] Zherebtsov S.V., Salishchev G.A., Galeyev R.M., et al. Production of submicrocrystalline structure in large-scale Ti--6Al--4V billet by warm severe deformation processing. Scr. Mater., 2004, vol. 51, no. 12, pp. 1147--1151. DOI: https://doi.org/10.1016/j.scriptamat.2004.08.018

[7] Temis Yu.M., Khudyakov A.P. Mathematical modeling of isothermal punching and superplasticity forming of hollow fan blade. Vestnik UGATU, 2015, vol. 19, no. 3, pp. 50--60 (in Russ.).

[8] Perepelkin A.A., Matasov I.I., Nuzhdin G.A. Isothermal deformation and diffusion welding elements sheet construction from high grade materials. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2015, no. 3, pp. 72--81 (in Russ.).

[9] Botkin A.V., Varenik E.V., Abramov A.N. Computer design of imitation compressor blade isothermal forging. Vestnik MGTU im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University], 2017, vol. 15, no. 2, pp. 40--47 (in Russ.). DOI: https://doi.org/10.18503/1995-2732-2017-15-2-40-47

[10] Astanin V.V., Safin F.F., Kandarov I.V., et al. Low temperature applications superplasticity for aviations products. Vestnik UGATU, 2012, vol. 16, no. 7, pp. 12--16 (in Russ.).

[11] Semenova I.P., Polyakova V.V., Valiev R.R., et al. Microstructure and properties of blades of GTE compressor produced by die forging of ultra-fine grained ВТ6 alloy. FTVD [PHPT], 2011, vol. 21, no. 4, pp. 86--95 (in Russ.).

[12] Jackson M. Microstructural evolution of titanium alloys during isothermal subtransus forging. London, University of London Press, 2002.

[13] Chen C.C., Coyne J.E. Deformation characteristics of Ti--6AI--4V alloy under isothermal forging conditions. Metall. Mater. Trans. A, 1976, vol. 7, no. 12, pp. 1931--1940. DOI: https://doi.org/10.1007/BF02659826

[14] Bache M.R., Cope M., Davies H.M., et al. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature. Int. J. Fatigue, 1997, vol. 19, no. 93, pp. 83--88. DOI: https://doi.org/10.1016/S0142-1123(97)00020-0

[15] Balasundar I., Raghu T., Kashyap B.P. Modeling the hot working behavior of near-α titanium alloy IMI 834. Prog. Nat. Sc., 2013, vol. 23, no. 6, pp. 598--607. DOI: https://doi.org/10.1016/j.pnsc.2013.11.004

[16] Balasundar I., Raghu T., Kashyap B.P. Modeling the high temperature deformation behaviour of a near alpha titanium alloy with bi-modal microstructure. Mater. Sc. Forum, 2012, vol. 710, pp. 533--538. DOI: https://doi.org/10.4028/www.scientific.net/MSF.710.533

[17] Liu Y., Baker T.N. Deformation characteristics of IMI685 titanium alloy under β isothermal forging conditions. Mater. Sc. Eng. A, 1995, vol. 197, no. 10, pp. 125--131. DOI: https://doi.org/10.1016/0921-5093(95)09691-4

[18] Li X., Lu S.Q., Fu M.W., et al. The optimal determination of forging process parameters for Ti--6.5Al--3.5Mo--1.5Zr--0.3Si alloy with thick lamellar microstructure in two phase field based on P-map. J. Mater. Process. Technol., 2010, vol. 210, no. 2, pp. 370--377. DOI: https://doi.org/10.1016/j.jmatprotec.2009.09.026

[19] Yang X., Guo H., Yao Z., et al. Effect of isothermal forging strain rate on microstructures and mechanical properties of BT25y titanium alloy. Mater. Sc. Eng. A, 2016, vol. 673, pp. 355--361. DOI: https://doi.org/10.1016/j.msea.2016.07.084

[20] Zhang S., Zeng W., Zhao Q., et al. High cycle fatigue of isothermally forged Ti--6.5Al--2.2Mo--2.2Zr--1.8Sn--0.7W--0.2Si with different microstructures. J. Alloys Compd., 2016, vol. 689, pp. 114--122. DOI: https://doi.org/10.1016/j.jallcom.2016.07.277

[21] Bakradze M.M., Skugorev A.V., Kucheryaev V.V., et al. Computer modeling of technological metal forming processes as effective instrumentfor development of new technologies. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 175--185 (in Russ.).

[22] Kablov E.N., Ospennikova O.G., Lomberg B.S. Complex innovation technology of isothermal forging in air under the superplasticity conditions of superalloy discs. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2012, no. S, pp. 129--141 (in Russ.).

[23] Ponomarenko D.A., Skugorev A.V., Sidorov S.A., et al. Technological capabilities of specialized isothermal presses with maximum force 6.3 and 16 MN in the manufacture of parts for aviation and space purposes. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem [Forging and Stamping Production. Material Working by Pressure], 2015, no. 9, pp. 36--40 (in Russ.).

[24] Kablov E.N. Klyuchevaya problema --- materialy. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Key issue --- materials. Trends and ranging mark of innovative Russia development]. Moscow, VIAM Publ., 2015, pp. 458--464 (in Russ.).

[25] Kablov E.N. Innovative developments of FSUE "VIAM" SSC of RF on realization of Strategic directions of the development of materials and technologies of their processing for the period until 2030. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2015, no. 1, pp. 3--33 (in Russ.).

[26] Ponomarenko D.A., Skugorev A.V., Sidorov S.A., et al. Influence of heat exchange between workpiece and die on forming process of aerospace parts by special isothermal presses. Trudy VIAM [Proceedings of VIAM], 2016, no. 10, pp. 37--45 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2016-0-10-3-3

[27] Nochovnaya N.A. Research of the influence of parameters of isothermal deformation and heat treatment on structure and mechanical properties punchings from alloy VT6ch. Trudy VIAM [Proceedings of VIAM], 2017, no. 10, pp. 24--32 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2017-0-10-3-3

[28] Anoshkin N.F., Ermanok M.Z., eds. Polufabrikaty iz titanovykh splavov [Half-blanks from titanium alloys]. Moscow, VILS Publ., 1996.

[29] Zolotov A.M., Chizhik T.A., Smirnov M.O. Drawing the third kind recrystallization curves of titanium alloy ВТ6. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg Polytechnic University Journal of Engineering Science and Technology], 2017, vol. 23, no. 4, pp. 118--126 (in Russ.).

[30] Seshacharyulu T., Medeiros S.C., Frazier W.G., et al. Microstructural mechanisms during hot working of commercial grade Ti--6Al--4V with lamellar starting structure. Mater. Sc. Eng. A, 2002, vol. 325, no. 1-2, pp. 112--125.DOI: https://doi.org/10.1016/S0921-5093(01)01448-4

[31] Semiatin S.L., Goetz R.L., Shell E.B., et al. Cavitation and failure during hot forging of Ti--6Al--4V. Metall. Mater. Trans. A, 1999, vol. 30, no. 5, pp. 1411--1424. DOI: https://doi.org/10.1007/s11661-999-0289-0