Effect of Autoclave Processing Parameters used to Form Hybrid SIAL Parts on the Structure and Properties of Al-Li Alloy 1441 Sheets
Authors: Serebrennikova N.Yu., Konovalov A.N., Sudarchikova M.A., Karpukhin S.D., Kolmakov A.G. | Published: 07.06.2020 |
Published in issue: #3(132)/2020 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing | |
Keywords: SIAL hybrid composite material, Al-Li alloy 1441, heat treatment, aging |
The paper considers the main stages of developing hybrid composite materials similar to GLARE, such as SIAL, on the basis of alloy 1441 sheets. The technology of manufacturing aviation products via auto-clave forming of such materials includes additional episodes of heating the thermally processed alloy 1441 sheets that form part of the hybrid material structure. Studying the microstructure of the Al-Li alloy sheets, the number of emergent phases and their mechanical properties shows that there is no considerable variation to be found in the properties of the SIAL hybrid composite material as a result of the alteration taking place
The work is performed as part of actualising a comprehensive field of research 6.2 "Laminate fracture-resistant, high-strength metal-polymer materials" ("Strategic areas of developing materials and material processing technology for the period up to 2030")
References
[1] Kablov E.N. Innovative developments of FSUE "VIAM" SSС of RF on realization of "Strategic directions of the development of materials and technologies of their processing for the period until 2030". Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2015, no. 1, pp. 3--33 (in Russ.).
[2] Antipov V.V., Serebrennikova N.Yu., Shestov V.V., et al. Laminated hybrid materials on basis of Al-Li alloy sheets. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 212--224 (in Russ.).
[3] Kablov E.N., Antipov V.V., Senatorova O.G. Aluminium fiberglass SIAL-1441 laminates and cooperation with "Airbus" and "TU Delft". Tsvetnye metally, 2013, no. 9, pp. 50--53 (in Russ.).
[4] Kablov E.N. Materials of new generation --- foundation for innovation, technology leadership and national safety of Russia. Intellekt & Tekhnologii, 2016, no. 2, pp. 16--21 (in Russ.).
[5] Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., et al. Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2016, no. 3, pp. 3--8 (in Russ.).
[6] Benedictus F.R., Schijve J., Alderliesten R.C., et al. Hybrid wing structures for aging USAF transports. Int. Conf. on Damage Tolerance of Aircraft Structures, 2009, no. 31, p. 997.
[7] Jensen B.J., Cano R.J., Hales S.J., et al. Fiber metal laminates made by the VARTM process. ICCM-17, 2009, pp. 575--584.
[8] Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 195--211 (in Russ.).
[9] Oreshko E.I., Erasov V.S., Podzhivotov N.Yu. Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2014, no. S4, pp. 109--117 (in Russ.).
[10] Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiy-litievye splavy. T. II-3. Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy [Aluminum-lithium alloys. Vol. II-3. Nonferrous materials and alloys]. Moscow, Mashinostroenie Publ., 2001.
[11] Beumler Th. Flying GLARE: a contribution to aircraft certification issues on strength properties in non-damaged and fatigue damaged GLARE structures. Ios Pr. Inc., 2004.
[12] Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., et al. Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2016, no. 1, pp. 53--61 (in Russ.).
[13] Qi C., Zhidong G., Zengshan L., et al. Experimental investigation on impact performances of GLARE laminates. CJA, 2015, vol. 28, no. 6, pp. 1784--1792. DOI: https://doi.org/10.1016/j.cja.2015.07.002
[14] Gunnink J.W., Vlot A., De Vries T.J., et al. GLARE technology development 1997--2000. Appl. Compos. Mater., 2002, vol. 9, no. 4, pp. 201--219. DOI: https://doi.org/10.1023/A:1016006314630
[15] Fredell R.S., Gunnink J.W., Bussi R.G., et al. "Carefree" hybrid wing structures for aging USAF transports. 1st Int. Conf. on Damage Tolerance of Aircraft Structures. TU Delft, 2007.
[16] Lukina E.A., Alekseev A.A., Antipov V.V., et al. Application of the diagrams of phase transformations during aging for optimizing the aging conditions for V1469 and 1441 Al-Li alloys. Russ. Metall., 2009, vol. 2009, no. 6, pp. 505--511. DOI: https://doi.org/10.1134/S0036029509060081
[17] Rioja R.J., Liu J. The evolution of Al-Li base products for aerospace and space applications. Metall. and Mat. Trans. A, 2012, vol. 43, no. 9, pp. 3325--3337.