Phase Equilibrium in the Pb–Sn System During Pyrometallurgical Sublimation
Authors: Korolev A.A., Krayukhin S.A., Maltsev G.I. | Published: 17.02.2019 |
Published in issue: #1(124)/2019 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing | |
Keywords: equilibrium phase diagram, vacuum distillation, molecular interaction volume model, lead, tin |
Vacuum distillation is one of the ways to recover components of the Pb--Sn alloy created during lead bullion processing. We used phase diagrams for preliminary selection of system temperature and pressure as well as for estimation of component separation efficiency during vacuum distillation. We computed parameters of vapour-liquid equilibrium states, including phase composition as function of temperature and pressure for the Pb--Sn alloy undergoing vacuum distillation. We computed saturated vapour pressure in the temperature range of 823--1073 K for Pb (2.63·10-4--1.49·10-1) and Sn (3.32·10-9--8.12·10-5). The values of the ratio р*Pb/р*Sn = 7.91·104--1.84·103 and the separation index logßPb = 3.19--5.07 are high, which provides a theoretical justification for selective recovery of these metals by means of vacuum distillation, concentrating the lead in the gaseous phase (Pb>1) and the tin in the liquid phase. The mole fraction of lead in the gaseous phase уPb = 0.9955--0.9999 increases with increases in temperature (from 823 to 1073 K) and the mole fraction of metal in the alloy хPb = 0.1--0.9. We computed the following parameters for the vapour-gas phase boundary in the Pb--Sn alloy: excess Gibbs energy GEm=0.18--0.72 kJ/mole; excess enthalpy HEm=0.056--0.40 kJ/mole; excess entropy SEm=0.07--0.35 J / (mole·K)
References
[1] Berman A. Total pressure measurements in vacuum technology. Academic Press, 1985.
[2] Winkler O., Bakish R. Vacuum metallurgy. Elsevier, 1971.
[3] Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb–Sn alloy with vacuum distillation. Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 6, pp. 1822–1831. DOI: 10.1016/S1003-6326(13)62666-7
[4] Wang A., Li Y., Yang B., et al. Process optimization for vacuum distillation of Sn–Sb alloy by response surface methodology. Vacuum, 2014, vol. 109, pp. 127–134. DOI: 10.1016/j.vacuum.2014.07.013
[5] Dai Y.N., Yang B. Vacuum metallurgy of nonferrous metals. Beijing, Metallurgical Industry Press, 2009.
[6] Yang B., Kong L.-x., Xu B.-q., et al. Recycling of metals from waste Sn-based alloys by vacuum separation. Trans. Nonferrous Met. Soc. China, 2015, vol. 25, no. 4, pp. 1315–1324. DOI: 10.1016/S1003-6326(15)63730-X
[7] Liu D.C., Yang B., Wang F., et al. Research on the removal of impurities from crude nickel by vacuum distillation. Phys. Procedia, 2012, vol. 32, pp. 363–371. DOI: 10.1016/j.phpro.2012.03.570
[8] Dai Y.N., Yang B. Non-ferrous metals and vacuum metallurgy. Beijing, Metallurgical Industry Press, 2000.
[9] Smith J.M., Van Ness H.C., Abbott M.M. Introduction to chemical engineering thermodynamics. McGraw-Hill, 2001.
[10] Tao D.P. A new model of thermodynamics of liquid mixtures and its application to liquid alloys. Thermochim. Acta, 2000, vol. 363, no. 1-2, pp. 105–113. DOI: 10.1016/S0040-6031(00)00603-1
[11] Poizeau S., Kim H.J., Newhouse J.M., et al. Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys. Electrochim. Acta, 2012, vol. 76, pp. 8–15. DOI: 10.1016/j.electacta.2012.04.139
[12] Newhouse J.M., Poizeau S., Kim H., et al. Thermodynamic properties of calcium–magnesium alloys determined by emf measurements. Electrochim. Acta, 2013, vol. 91, pp. 293–301. DOI: 10.1016/j.electacta.2012.11.063
[13] Miyazaki N., Adachi N., Todaka Y., et al. Thermoelectric property of bulk CaMgSi intermetallic compound. J. Alloys Compd., 2017, vol. 691, pp. 914–918. DOI: 10.1016/j.jallcom.2016.08.227
[14] Cahn R.W., Haasen P., Kramer E.J., eds. Materials science and technology. Vol. 1. Structure of Solids. Weinheim, VCH, 1993.
[15] Hultgren R., Desai P.D., Hawkins D.T., et al. Selected values of the thermodynamic properties of binary alloys. American Society for Metals, 1973.
[16] Dai Y., Yang B. Vacuum metallurgy for non-ferrous metals and materials. Beijing, Metallurgical industry Press, 2000.
[17] Yang H.W., Yang B., Xu B.Q., et al. Application of molecular interaction volume model in vacuum distillation of Pb-based alloys. Vacuum, 2012, vol. 86, no. 9, pp. 1296–1299. DOI: 10.1016/j.vacuum.2011.11.017
[18] Jiang W.L., Zhang C., Xu N., et al. Experimental investigation and modelling of phase equilibria for the Ag–Cu–Pb system in vacuum distillation. Fluid Phase Equilib., 2016, vol. 417, pp. 19–24. DOI: 10.1016/j.fluid.2016.02.026
[19] Nan C.B., Xiong H., Xu B.-Q., et al. Measurement and modeling of phase equilibria for Sb–Sn and Bi–Sb–Sn alloys in vacuum distillation. Fluid Phase Equilib., 2017, vol. 442, pp. 62–67. DOI: 10.1016/j.fluid.2017.03.016
[20] Zhao J.Y., Yang H.W., Nan C.B., et al. Kinetics of Pb evaporation from Pb–Sn liquid alloy in vacuum distillation. Vacuum, 2017, vol. 141, pp. 10–14. DOI: 10.1016/j.vacuum.2017.03.004
[21] Kong L.-X., Xu J., Xu B.-Q., et al. Vapor-liquid phase equilibria of binary tin–antimony system in vacuum distillation: experimental investigation and calculation. Fluid Phase Equilib., 2016, vol. 415, pp. 176–183. DOI: 10.1016/j.fluid.2016.02.012
[22] Nan C.V., Yang H.W., Yang B., et al. Experimental and modeling vapor-liquid equilibria: Separation of Bi from Sn by vacuum distillation. Vacuum, 2017, vol. 135, pp. 109–114. DOI: 10.1016/j.vacuum.2016.10.035
[23] Song B., Xu N., Jiang W., et al. Study on azeotropic point of Pb–Sb alloys by abinitio molecular dynamic simulation and vacuum distillation. Vacuum, 2016, vol. 125, pp. 209–214. DOI: 10.1016/j.vacuum.2016.01.004
[24] Zhang C., Jiang W.L., Yang B., et al. Experimental investigation and calculation of vapor-liquid equilibria for Cu–Pb binary alloy in vacuum distillation. Fluid Phase Equilib., 2015, vol. 405, pp. 68–72. DOI: 10.1016/j.fluid.2015.07.043
[25] Degtyareva V.F., Ponyatovskiy E.G. High-pressure phases in V-elements alloys a new type of electronic phases. Fizika tverdogo tela, 1982, vol. 24, pp. 2672–2681 (in Russ.).
[26] Kong L.-X., Yang B., Xu B.-Q., et al. Application of molecular interaction volume model in separation of Pb–Sn–Sb ternary alloy by vacuum distillation. Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 8, pp. 2408–2415. DOI: 10.1016/S1003-6326(13)62748-X
[27] Dong Z.W., Xiong H., Deng Y., et al. Separation and enrichment of PbS and Sb2S3 from jamesonite by vacuum distillation. Vacuum, 2015, vol. 121, pp. 48–55. DOI: 10.1016/j.vacuum.2015.07.009
[28] Kong L.X., Yang B., Xu B.Q., et al. Application of MIVM for Pb–Sn–Sb ternary system in vacuum distillation. Vacuum, 2014, vol. 101, pp. 324–327. DOI: 10.1016/j.vacuum.2013.10.004
[29] Kong L., Yang B., Xu B., et al. Application of MIVM for phase equilibrium of Sn–Pb–Sb system in vacuum distillation. Fluid Phase Equilib., 2014, vol. 364, pp. 1–5. DOI: 10.1016/j.fluid.2013.12.003
[30] Baranov M.A. Spherical symmetry of electronic shells of atoms and crystal stability. EFTZh [EPHTJ], 2006, vol. 1, pp. 49–62 (in Russ.).