Identification of Mathematical Model Parameters of Control Unit of Autonomous Single-Stage Electro-Hydraulic Control Actuator
Authors: Belonogov O.B. | Published: 09.02.2018 |
Published in issue: #1(118)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: static characteristics, frequency response characteristics, steering machine, parameter identification method |
The article reports on static and dynamic (frequency) characteristics of control unit of autonomous single-stage electro-hydraulic steering machine, the data being obtained by the developed original experimental devices. The study introduces an engineering method for identifying the mathematical model parameters of a control unit according to the experimental static and dynamic characteristics. The parameter identification method of a second order link with classic dry (Coulomb) friction was tested on the example of real dynamic object parameter identification. This object is a mechanical part of the control unit of a steering machine. Findings of the research show that the natural frequency of the control unit mechanical part is almost 2 times less than the natural frequency of the entire control unit. This should be considered when designing and constructing such devices. The study shows that the developed mathematical model corresponds to the real characteristics of the control unit of the autonomous single-stage electro-hydraulic steering machine in a wide frequency range
References
[1] Frolov K.V., red. Mashinostroenie. Entsiklopediya. T. IV-22. Raketno-kosmicheskaya tekhnika. Kn. 1. [Mechanical engineering encyclopedia. Vol. IV-22. Rocket and space equipment. B. 1. Moscow, Mashinostroenie Publ., 2012. Pp. 918–924.
[2] Belonogov O.B., Zharkov M.N., Kudryavtsev V.V. Osobennosti skhemno-konstruktivnykh resheniy i funktsionirovaniya elektrogidravlicheskikh rulevykh mashin raket (kratkiy tekhniko-istoricheskiy obzor) [Characteristics of the structural concepts and operation of rocket electrohydraulic steering machines (brief technical and historical overview)]. Raketno-kosmicheskaya tekhnika [Rocket-and-Space Equipment]. Ser. XII, 1998, iss. 3–4, pp. 3–25 (in Russ.).
[3] Reshetnikov E.M., Sablin Yu.A., Grigorev V.E. Elektromekhanicheskie preobrazovateli gidravlicheskikh i gazovykh privodov [Electromechanical transducers of hydraulic and gas drives]. Moscow, Mashinostroenie Publ., 1982. 144 p.
[4] Belonogov O.B. Monoharmonic method of autointegration with full averaging of fourier coefficients for calculation of frequency response of dynamic objects and control systems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2013, no. 4, pp. 3–13 (in Russ.).
[5] Belonogov O.B. Method for identification of second-order link parameters with classical dry (Coulomb) friction for analysis and synthesis of nonlinear dynamic objects and control systems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2017, no. 3, pp. 118–128 (in Russ.). DOI: 10.18698/0236-3933-2017-3-118-128
[6] Vavilov A.A., Solodovnikov A.I. Eksperimentalnoe opredelenie chastotnykh kharakteristik avtomaticheskikh system [Experimental determination of automatic system frequency response]. Moscow, Leningrad, Gosudarstvennoe energeticheskoe izdatelstvo Publ., 1963. 252 p.
[7] Tikhenko V.N., Volkov A.A. Research on frictional forces in hydraulic feed drive system of metal-cutting machine. Pratsi Odeskogo politekhnichnogo universitetu [Odeskyi Politechnichnyi Universytet. Pratsi], 2012, no. 1 (38), pp. 79–83.