Prospects for Developing Modern High-Vacuum Mechanical Pumps

Authors: Ochkov A.A. Published: 04.04.2022
Published in issue: #1(140)/2022  

DOI: 10.18698/0236-3941-2022-1-103-137

Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems  
Keywords: high vacuum mechanical pumps, turbomolecular vacuum pumps, molecular vacuum pumps, optimization, pumping characteristics


High-vacuum mechanical pumps are widely used in various fields of science and technology for research and industrial applications. Modern high-vacuum mechanical pumps include molecular vacuum pumps, turbomolecular vacuum pumps and hybrid turbomolecular vacuum pumps, i.e., designs that represent a turbomolecular vacuum pump with one or more additional molecular stages. There are also a number of experimental and theoretical developments that propose combinations of different types of high-vacuum pumps in which, as a rule, on the suction side the main pumping is carried out by an axial turbomolecular stage. These schemes belong to the class of modern high-vacuum mechanical pumps. The paper examines the designs and analyzes scientific studies of modern high-vacuum mechanical pumps. Relying on this overview, we found the unsolved problems of designing and mathematical modeling of high-vacuum mechanical pumps working processes, which could give further prospects for vacuum technology development

The study was carried out with the financial support of the RFBR (project no. 20-18-50177)

Please cite this article in English as:

Ochkov A.A. Prospects for developing modern high-vacuum mechanical pumps. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 1 (140), pp. 103--137 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-1-103-137


[1] Demikhov K.E., Nikulin N.K., Svichkar’ E.V. Molekulyarnye potoki v vysokovakuumnykh sistemah [Molecular fluxes in high vacuum systems]. Moscow, Bauman MSTU Publ., 2013.

[2] Bird G.A. Molecular gas dynamics. Oxford University Press, 1976.

[3] Gaede W. Die Molekularluftpumpe. Ann. Phys., 1913, vol. 346, no. 7, pp. 337--380. DOI: https://doi.org/10.1002/andp.19133460707

[4] Leonov L.B. On working speed of turbomolecular vacuum pump. Elektronnaya tekhnika. Ser. Elektrovakuumnye i gazorazryadnye pribory, 1980, no. 4, pp. 36--39 (in Russ.).

[5] Compact molecular-drag vacuum pump. Patent US 7165931. Appl. 03.01.2005, publ. 02.06.2005.

[6] Demikhov K.E., Nikulin N.K. Optimizatsiya vysokovakuumnykh mekhanicheskikh nasosov [Optimization of high-vacuum mechanical pumps]. Moscow, Bauman MSTU Publ., 2010.

[7] Demikhov K.E., Ochkov A.A. Mathematical model of pumping gas process by the cylindrical molecular vacuum pump in the wide range of pressures. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2014, no. 12, рр. 200--209 (in Russ.). DOI: http://dx.doi.org/10.7463/1214.0748304

[8] Demikhov K.E., Ochkov A.A., Tsakadze G.T. A technique for computing optimum parameters of a combined molecular drag vacuum pump. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2017, no. 5 (116), pp. 98--104 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2017-5-98-104

[9] Demikhov K.E., Nikulin N.K., Svichkar’ E.V. Prospects in combined turbomolecular vacuum pumps development. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 5 (in Russ.).DOI: http://dx.doi.org/10.18698/2308-6033-2013-5-754

[10] Nikulin N.K., Svichkar’ E.V., Solov’yev I.V. Molekulyarno-vyazkostnaya protochnaya chast’ [Molecular-viscous flow path]. Patent RU 164000. Appl. 16.12.2015, publ. 20.08.2016 (in Russ.).

[11] Svichkar’ E.V. Razrabotka matematicheskoy modeli protsessa otkachki gaza i metoda rascheta otkachnykh parametrov molekulyarno-vyazkostnogo vakuumnogo nasosa v molekulyarno-vyazkostnom rezhime techeniya gaza. Dis. kand. tekh. nauk [Development of mathematical model of gas pump process and method for calculating pump parameters of vicious-molecular pump in vicious regime of gas flow. Cand. Sc. (Eng.). Diss.]. Moscow, Bauman MSTU, 2017 (in Russ.).

[12] Nikulin N.K., Svichkar’ E.V., Solov’yev I.V. Mnogopotochnyy molekulyarno-vyazkostnyy vakuumnyy nasos parallel’nogo deystviya [Multithread molecular viscosity vacuum pump of parallel action]. Patent RU 169114. Appl. 15.12.2016, publ. 03.03.2017 (in Russ.).

[13] Hofmann J., Zipp A. Vacuum pump. Patent US 2295812. Appl. 28.05.2010, publ. 16.03.2011.

[14] Frolov E.S., ed. Mekhanicheskie vakuumnye nasosy [Mechanical vacuum pumps]. Moscow, Mashinostroenie Publ., 1989.

[15] Pavlov V.A. Giroskopicheskiy effekt, ego proyavleniya i ispol’zovanie [Gyroscopic effect, its occurrence and application]. Leningrad, Sudostroenie Publ., 1978.

[16] Gordon Е., Osterstrom V. A new type of turbomolecular vacuum pump bearing. J. Vac. Sc. Technol. A, 1983, vol. 1, no. 2, art. 224. DOI: https://doi.org/10.1116/1.572077

[17] Gordeeva U.S., Demikhov K.E., Ochkov A.A. Development of a calculation method of the main parameters of the multistage turbomolecular pump. IOP Conf. Ser.: Mater. Sc. Eng., 2020, vol. 781, art. 012010. DOI: https://doi.org/10.1088/1757-899X/781/1/012010

[18] Vakuumnoe oborudovanie [Vacuum equipment]. Moscow, TsINTIkhimneftemash Publ., 1981.

[19] Svichkar’ E.V., Nikulin N.K., Demikhov K.E. Dimensioning of the pumping characteristics of the kinetic high-vacuum pump. Mashinostroitel’, 2015, no. 2, pp. 33--42 (in Russ.).

[20] Naris S., Tantos C., Valougeorgis D. Kinetic modeling of a tapered Holweck pump. Vacuum, 2014, vol. 109, pp. 341--348. DOI: https://doi.org/10.1016/j.vacuum.2014.04.006

[21] Nishide A., Kaneto S., Ikegami T., et al. Influence of magnetic fields on a large-sized turbomolecular pump. J. Vac. Sc. Technol., 1978, vol. 20, no. 4, art. 1105. DOI: https://doi.org/10.1116/1.571578

[22] Goetz D.G. Large turbomolecular pumps for fusion research and high-energy physics. Vacuum, 1982, vol. 32, no. 10-11, pp. 703--706. DOI: https://doi.org/10.1016/0042-207X(82)94052-0

[23] Dushman S. Scientific foundations of vacuum technique. New York, Jhon Wiley & Sons, 1949.

[24] Ogiwara N., Kanazawa K., Inohara T., et al. Influence of magnetic fields on turbo-molecular pumps. Vacuum, 2010, vol. 84, no. 5, pp. 718--723. DOI: https://doi.org/10.1016/j.vacuum.2009.06.029

[25] Zotov I.V., Lisienko V.G. Improvement of the design procedure of the radial active magnetic bearings. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh State Technical University], 2012, vol. 8, no. 6, pp. 54--56 (in Russ.).

[26] Vereshchagin V.P., Klabukov V.A. Mathematical model of magnetic bearing. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2009, vol. 112, no. 5, pp. 17--22 (in Russ.).

[27] Polyakhov N.D., Stotskaya A.D. [On electromagnetic processes in active magnetic bearings]. Myagkie vychisleniya i izmereniya SCM’2012. Tez. dokl. mezhdunar. konf. [Soft Calculations and Measurements SCM’2012. Abs. Int. Conf.]. St. Petersburg, 2012, pp. 143--145 (in Russ.).

[28] Bogdanova Yu.V., Gus’kov A.M. Modeling the rotor dynamics of electrospindle on magnetic bearings. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 1 (in Russ.). DOI: https://doi.org./10.7463/0115.0753146

[29] Bo Z., Zixue G., Quanxin X., et al. Study of optimization and design for disk-type molecular pump based on DSMC method. IJAPM, 2013, vol. 3, no. 4, pp. 244--246. DOI: https://doi.org/10.7763/IJAPM.2013.V3.213

[30] Cozza I.F., Campagna L., Emelli E. A kinetic approach in modelling compact siegbahn molecular drag stages: physical and numerical aspects. 64th IUVSTA Workshop on Practical Applications and Methods of Gas Dynamics for Vacuum Science and Technology, 2011. Available at: https://www.itep.kit.edu/downloads/7_Cozza.pdf (accessed: 15.12.2021).

[31] Tollner M.E., Spitteler M. Molecular drag pumping mechanism. Patent US 20100104428. Appl. 25.07.2007, publ. 29.04.2010.

[32] Kimman M.H., Langen H.H., Munnig Schmidt R.H. A miniature milling spindle with active magnetic bearings. Mechatronics, 2010, vol. 20, no. 2, pp. 224--235. DOI: https://doi.org/10.1016/j.mechatronics.2009.11.010

[33] Grzebyk T. MEMS vacuum pumps. J. Microelectromech. Syst., 2017, vol. 26, no. 4, pp. 705--717. DOI: https://doi.org/10.1109/JMEMS.2017.2676820

[34] Sagdeev D.I., Gabitov I.R., Fomina M.G., et al. Viscosity and density of vacuum oils for diffusion pumps. J. Phys.: Conf. Ser., 2019, vol. 1385, art. 012058. DOI: https://doi.org/10.1088/1742-6596/1385/1/012058

[35] Sagdeev D., Fomina M., Alyaev V., et al. Density of working liquids for diffusion vacuum pumps. J. Chem. Eng. Data., 2018, vol. 63, no. 5, pp. 1698--1705. DOI: https://doi.org/10.1021/acs.jced.8b00028

[36] Waltrich P., Herrmann H. High vacuum pumping system. Patent US 4722191. Appl. 21.07.1987, publ. 02.02.1988.

[37] Demikhova O.A., Demikhov R.K. Turbomolekulyarnyy nasos [Turbomolecular pump]. Patent RU 1810610. Appl. 28.06.1991, publ. 23.04.1993 (in Russ.).

[38] Sergeev V.P., Voronin A.G. Dvukhpotochnyy turbomolekulyarnyy vakuumnyy nasos s gibridnymi protochnymi chastyami [Two-flow turbomolecular vacuum pump with hybrid air-gas channels]. Patent RU 2543917. Appl. 24.03.2014, publ. 10.03.2015 (in Russ.).

[39] Voronin A.G., Sergeev V.P. Odnopotochnyy chetyrekhstupenchatyy turbomole-kulyarnyy nasos [Single-flow four-stage turbomolecular pump]. Patent RU2560133. Appl. 10.10.2014, publ. 20.08.2015 (in Russ.).

[40] Demikhov K.E. Current trends of high-vacuum pumps. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2014, no. 5 (98), pp. 3--11 (in Russ.).

[41] Kloss Yu.Yu., Martynov D.V., Cheremisin F.G. Computer simulation and analysis of the Holweck pump in the transient regime. Tech. Phys., 2012, vol. 57, no. 4, pp. 451--456. DOI: https://doi.org/10.1134/S1063784212040159

[42] Giors S., Colombo E., Inzoli F., еt al. Computational fluid dynamic model of a tapered Holweck vacuum pump operating in the viscous and transition regimes. J. Vac. Sc. Technol. A, 2006, vol. 24, no. 4, pp. 1584--1591. DOI: https://doi.org/10.1116/1.2178362

[43] Shostak Yu.A., Nikulin N.K. Modeling of gas flow in a path of combined turbomolecular pump with disk stage. Vakuumnaya tekhnika i tekhnologiya, 2018, vol. 28, no. 4, pp. 17--21 (in Russ.).

[44] Demikhov K.E., Nikulin N.K. [Effect of flow path structure of combined TMN on its pump characteristics]. Vakuumnaya tekhnika, materialy i tekhnologiya. Mater. V Mezhdunar. nauch.-tekh. konf. [Vacuum Technics, Materials and Technology. Proc. V Int. Sc.-Tech. Conf.]. Moscow, Novella Publ., 2010, pp. 63--68 (in Russ.).

[45] Liu K., Gu X.G., Ba D.C., et al. Numerical research on flow characteristics of vortex stage in dry high vacuum pump. Phys. Procedia, 2012, vol. 32, pp. 127--134. DOI: https://doi.org/10.1016/j.phpro.2012.03.529

[46] Demikhov K.E., Ochkov A.A. Effective range of gas pressure at the suction side of the turbomolecular vacuum pump. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2016, no. 5 (110), pp. 89--95 (in Russ.).DOI: http://dx.doi.org/10.18698/0236-3941-2016-5-89-95

[47] Demikhov K.E., Ochkov A.A. Universal mathematical model of degassing process by molecular vacuum pump. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2017, no. 6 (117), pp. 134--143 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2017-6-134-143