Investigating the Effect of Plastic Deformation on Acoustic and Magnetic Properties of Austenitic and Duplex Steel

Authors: Klyushnikov V.A., Mishakin V.V. Published: 10.04.2018
Published in issue: #2(119)/2018  

DOI: 10.18698/0236-3941-2018-2-102-113

Category: Metallurgy and Science of Materials | Chapter: Metal Science, Thermal Processing of Metals and Alloys  
Keywords: plastic deformation, austenitic steel, duplex stainless steel, martensitic transformation, acoustic properties, strain rate, eddy current method

We present the results of investigating how plastic deformation affects acoustic and magnetic properties of austenitic 12X18H10T steel and duplex 12X21H5T steel. We established the patterns of change in ultrasound parameters and ferrite phase content during plastic deformation in austenitic and duplex stainless steels at various strain rates. We detected differences in how magnetic properties change when the materials under investigation are deformed


[1] Lecroisey F., Pineau A. Martensitic transformations induced by plastic deformation in the Fe–Ni–Cr–C system. Metallurgical and Materials Transactions B, 1972, vol. 3, no. 2, pp. 391–400. DOI: 10.1007/BF02642042 Available at: https://link.springer.com/article/10.1007/BF02642042

[2] Rigmant M.B., Korkh M.K., Davydov D.I., Shishkin D.A., Korkh Y.V., Nichipuruk A.P., Kazantseva N.V. Methods for revealing deformation martensite in austenitic-ferritic steels. Russian Journal of Nondestructive Testing, 2015, vol. 51, no. 11, pp. 680–691. DOI: 10.1134/S1061830915110030 Available at: https://link.springer.com/article/10.1134/S1061830915110030

[3] Powell G.W., Marshall E.R., Backofen W.A. Strain hardening of austenitic stainless steel. Trans. ASME, 1958, vol. 50, pp. 478–497.

[4] Hecker S.S., Stout M.G., Staudhammer K.P., Smith J.L. Effects of strain state and strain rate on deformation induced transformation in 304 stainless steel. P. I. Magnetic measurements and mechanical behavior. Metallurgical Transactions A, 1982, vol. 13, no. 4, pp. 619–626. DOI: 10.1007/BF02644427 Available at: https://link.springer.com/article/10.1007/BF02644427

[5] Padilha A.F., Rios P.R. Decomposition of austenite in stainless steel. ISIJ International, 2002, vol. 42, no. 4, pp. 325–327. DOI: 10.2355/isijinternational.42.325 Available at: https://www.jstage.jst.go.jp/article/isijinternational1989/42/4/42_4_325/_article/-char/en

[6] Huang G.L., Matlock D.K., Krauss G. Martensite formation, strain rate sensitivity and deformation behavior of type 304 austenitic steel sheet. Metall. Trans. A, 1989, vol. 20, no. 7, pp. 1239–1246. DOI: 10.1007/BF02647406 Available at: https://link.springer.com/article/10.1007/BF02647406

[7] Talonen J., Nenonen P., Pape G., Hanninen H. Effect of strain rate on the strain-induced y -- a martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A, 2005, vol. 36, no. 2, pp. 421–432. DOI: 10.1007/s11661-005-0313-y Available at: https://link.springer.com/article/10.1007/s11661-005-0313-y

[8] Lichtenfeld J.A., Mataya M.C., Van Tyne C.J. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall. Mater. Trans. A, 2006, vol. 37, no. 1, pp. 147–161. DOI: 10.1007/s11661-006-0160-5 Available at: https://link.springer.com/article/10.1007/s11661-006-0160-5

[9] Angel T. Formation of martensite in austenitic stainless steels. JISI, 1954, vol. 177, pp. 165–174.

[10] Byun T., Hashimoto N., Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater., 2004, vol. 52, no. 13, pp. 3889–3899. DOI: 10.1016/j.actamat.2004.05.003 Available at: https://www.sciencedirect.com/science/article/pii/S1359645404002654

[11] Talonen J., Hannien H. Damping properties of austenitic stainless steels containing strain-induced martensite. Metall. Mater. Trans. A, 2004, vol. 35, no. 8, pp. 2401–2406. DOI: 10.1007/s11661-006-0220-x Available at: https://link.springer.com/article/10.1007/s11661-006-0220-x

[12] Choi J-Y., Jin W. Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scripta Mater., 1997, vol. 36, no. 1, pp. 99–104. DOI: 10.1016/S1359-6462(96)00338-7 Available at: https://www.sciencedirect.com/science/article/pii/S1359646296003387

[13] Olson G.B., Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A, 1975, vol. 6, pp. 791–795. DOI: 10.1007/BF02672301 Available at: https://link.springer.com/article/10.1007/BF02672301

[14] Chawla K.K. Composite materials. Science and engineering. Springer, 2012. 542 p.

[15] Aleshin N.P., Lupachev V.G. Ul'trazvukovaya defektoskopiya [Ultrasonic defectoscopy]. Minsk, Vysshaya shkola Publ., 1987. 271 p.

[16] Klyuev V.V., red. Nerazrushayushchiy kontrol' i diagnostika [Non-destructive control and diagnostics]. Moscow, Mashinostroenie Publ., 1995. 488 p.

[17] Abreu H., Silva M., Herculano L., Bhadeshia H. Texture analysis of deformation induced martensite in an AISI 301L stainless steel: microtexture and macrotexture aspects. Material Research, 2009, vol. 12, no. 3, pp. 291–297. DOI: 10.1590/S1516-14392009000300008

[18] Lindell D. Texture evolution of warm-rolled and annealed 304L and 316L austenitic stainless steels. IOP Conference Series Materials Science and Engineering, 2015, vol. 82 (1), pp. 012101. DOI: 10.1088/1757-899X/82/1/012101 Available at: http://iopscience.iop.org/article/10.1088/1757-899X/82/1/012101

[19] Mertinger V., Nagyb E., Tranta F., Solyom J. Strain-induced martensitic transformation in textured austenitic stainless steels. Mater. Sci. Eng. A, 2008, vol. 481-482, pp. 718–722. DOI: 10.1016/j.msea.2007.02.165 Available at: https://www.sciencedirect.com/science/article/pii/S0921509307012221

[20] Sayers C. Ultrasonic velocities in anisotropic polycrystalline aggregates. Appl. Phys., 1982, vol. 15, no. 11, pp. 2157–2167. DOI: 10.1088/0022-3727/15/11/011 Available at: http://iopscience.iop.org/article/10.1088/0022-3727/15/11/011

[21] Allen D., Sayers C. The measurement of residual stress in textured steel using an ultrasonic velocity combinations technique. Ultrasonics, 1984, vol. 22, no. 4, pp. 179–188. DOI: 10.1016/0041-624X(84)90034-9 Available at: https://www.sciencedirect.com/science/article/pii/0041624X84900349

[22] Truell R., Elbaum C., Chick B.B. Ultrasonic methods in solid state. Academic press, 1969. 464 p.

[23] Kurashkin K.V., Mishakin V.V. Evaluation of residual stresses using ultrasound. Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2013, no. 4, pp. 54–58 (in Russ.).

[24] Mishakin V.V., Gonchar A.V., Kurashkin K.V., Danilova N.V. The joint weld destruction study after static loading by acoustic method. Tyazheloe mashinostroenie, 2009, no. 7, pp. 27–30 (in Russ.).

[25] Goldshteyn M.I., Litvinov V.S., Bronfin B.M. Metallofizika vysokoprochnykh splavov [Metallophysics of high-tensile alloys]. Moscow, Metallurgiya Publ., 1986. 312 p.