|

Shock Wave Front Structure in Twophase Porous Material

Authors: Attetkov A.V., Volkov I.K., Pilyavskaya E.V. Published: 26.05.2017
Published in issue: #3(114)/2017  

DOI: 10.18698/0236-3941-2017-3-41-53

 
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body  
Keywords: shock wave front structure, two-phase porous material, qualitative theory of the differential equations

The purpose of the article was to investigate the structure of stationary shock wave front by the qualitative theory of differential equations. We found a theoretical proof for possible existence of minimum speed of the shock wave propagation in a two-phase porous material and the critical speed leading to the full pores plastic wicking in the wave front. The study gives theoretical estimates of weak intensity shock wave front width.

References

[1] Zel’dovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of shock waves and hyperthermal hydrodynamic phenomena]. Moscow, Nauka Publ., 1966. 686 p.

[2] Nigmatulin R.I. Dinamika mnogofaznykh sred. Ch. 1 [Multiphase medium dynamics. Vol. 1]. Moscow, Nauka Publ., 1987. 464 p.

[3] Nigmatulin R.I. Dinamika mnogofaznykh sred. Ch. 2 [Multiphase medium dynamics. Vol. 2]. Moscow, Nauka Publ., 1987. 360 p.

[4] Nesterenko V.F. Impul’snoe nagruzhenie geterogennykh materialov [Impulsive loading of heterogeneous materials]. Novosibirsk, Nauka Publ.: Siberian Department, 1992. 200 p.

[5] Kiselev S.P., Ruev A.P., Trunev A.P., Fomin V.M., Shavaliev M.Sh. Udarno-volnovye protsessy v dvukhkomponentnykh i dvukhfaznykh sredakh [Shock-wave processes in two-component medium and biphasic mediums]. Novosibirsk, Nauka Publ.: Siberian Department, 1992. 261 p.

[6] Kanel’ G.I., Razorenov S.V, Utkin A.V, Fortov V.E. Udarno-volnovye yavleniya v kondensirovannykh sredakh [Shock-wave phenomena in condensed medium]. Moscow, Yanus-K Publ., 1996. 408 p.

[7] Al’tshuler L.V, Trunin R.F., Fortov V.E., Funtikov A.I., eds. Udarnye volny i ekstremal’nye sostoyaniya veshchestva [Shock waves and extremal states of matter]. Moscow, Nauka Publ., 2000. 425 p.

[8] Orlenko L.P., ed. Fizika vzryva. T. 1 [Physics of explosions. Vol. 1]. Moscow, Fizmatlit Publ., 2004. 832 p.

[9] Orlenko L.P., ed. Fizika vzryva. T. 2 [Physics of explosions. Vol. 2]. Moscow, Fizmatlit Publ., 2004. 656 p.

[10] Khasainov B.A., Attetkov A.V., Borisov A.A. Shock-wave initiation of porous energy-yielding materials and hot spots viscoplastic model. Khimicheskaya fizika, 1996, vol. 15, no. 7, pp. 53-125 (in Russ.).

[11] Dunin S.Z., Surkov V.V. Dynamics of the closing of pores at the shock wave front. Journal of Applied Mathematics and Mechanics, 1979, vol. 43, no. 3, pp. 550-558. DOI: 10.1016/0021-8928(79)90103-5 Available at: http://www.sciencedirect.com/science/article/pii/0021892879901035?via%3Dihub

[12] Dunin S.Z., Surkov V.V. Structure of a shock wave front in a porous solid. Journal of Applied Mechanics and Technical Physics, 1979, vol. 20, no. 5, pp. 612-618. DOI: 10.1007/BF00910554 Available at: http://link.springer.com/article/10.1007/BF00910554

[13] Attetkov A.V., Solov’yev V.S. Heterogeneous explosive decomposition in a weak shock wave. Combustion, Explosion and Shock Waves, 1987, vol. 23, no. 4, pp. 482-491. DOI: 10.1007/BF00749311 Available at: http://link.springer.com/article/10.1007/BF00749311

[14] Attetkov A.V., Golovina E.V., Ermolaev B.S. Mathematical simulation of mesoscopic processes of heat dissipation and heat transfer in a two-phase porous material subjected to shock compression. Journal of Heat Transfer Research, 2008, vol. 39, no. 6, pp. 479-487.

[15] Petrovskiy I.G. Lektsii po teorii obyknovennykh differentsial’nykh uravneniy [Lectures on the theory of ordinary differential equations]. Moscow, Nauka Publ., 1970. 280 p.

[16] Errousmit D., Pleys K. Obyknovennye differentsial’nye uravneniya. Kachestvennaya teoriya s prilozheniyami [Ordinary differential equations. Qualitative theory with applications]. Moscow, Mir Publ., 1986. 248 p.

[17] Bautin N.N., Leontovich E.A. Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti [Methods and techniques of qualitative research on dynamic systems on a plane]. Moscow, Nauka Publ., 1990. 488 p.