Comparative Analysis Modulus Elasticity Estimates for Composite Anisotropic Spherical Inclusions
Authors: Zarubin V.S., Kuvyrkin G.N., Savelieva I.Yu. | Published: 10.12.2014 |
Published in issue: #6(99)/2014 | |
Category: Design | |
Keywords: composite, anisotropic spherical inclusions, elastic moduli, bilateral estimates, method of self-consistency |
A comparative quantitative analysis of elastic properties estimates of a composite with anisotropic spherical inclusions that has different elastic characteristics is carried out. The article considers the variational approach in order to build bilateral boundaries values of the elastic moduli of the composite that allows to estimate the greatest possible error of calculation for these value. With the help of the method of self-consistency a system of nonlinear algebraic equations is obtained. This system establishes connection of the composite elastic characteristics with the volumetric concentration of inclusions and elastic properties of the matrix and of the inclusions. The opportunity of taking into account the influence of porosity on value of the composite elastic moduli is shown. The authors carried out comparison of the calculations results of elastic properties for the composite with different porosity and a matrix made of cobalt, reinforced with dispersed particles of tungsten carbide, with known experimental data on the measurement of the longitudinal elastic modulus of the composite used in the manufacture of cutting and drilling tools and creating and wear-resistant coatings.
References
[1] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro-inhomogeneous media]. Moscow, Nauka Publ., 1977. 400 p.
[2] Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor calculus]. Мoscow, Vysshaya Shkola Publ., 2001. 576 p.
[3] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 512 p.
[4] Zarubin V.S. Prikladnye zadachi termoprochnosti elementov konstruktsiy [Applied problems of thermal strength of structural elements]. Moscow, Mashinostroenie Publ., 1985. 296 p.
[5] Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, vol. 13, no. 4, pp. 213-222.
[6] Christensen R.M. Mechanics of composite materials. NY, Wiley-Interscience Publ., 1979. 348 p. (Russ. ed.: Kristensen R.M. Vvedenie v mekhaniku kompozitov. Moscow, Mir Publ., 1982. 334 p.).
[7] Eshelby J.D., Seitz F., Turnbul D., eds. The continuum theory of lattice defects. In Collected Works of J.D. Eshelby "Progress in Solid State Physics". New York, Academic Press Publ., 1956, vol. 3, pp. 79-303. (Russ. ed.: Eshelbi Dzh. Kontinual’naya teoriya dislokatsiy. Sb. St., Lyubov B.Ya. - ed. [Eshelby J.D. The continuum theory of dislocations]. Moscow, IL Publ., 1963. 248 p.).
[8] Kapitonov A.M., Teremov S.G., Red’kin V.E. Primenenie metoda dinamicheskoy uprugosti dlya kontrolya kachestva tverdosplavnogo instrumenta [Application of the method of dynamic elasticity to the quality control of carbide tools]. Krasnoyarsk, Sib. Feder. Uni. Publ., 2011. 192 p.
[9] Lee M., Gilmore R.S. Single crystal elastic constants of tungsten monocarbide. J. Mater. Sci., 1982, vol. 17, no. 9, pp. 2657-2660. DOI: 10.1007/BF00543901
[10] Golovchan V.T., Bondarenko V.P., Litoshenko N.V. Strength of polycrystalline tungsten monocarbide under tension. Problemy prochnosti [Strength of Materials, vol. 35, iss. 4, pp. 387-394], 2003, no. 4, pp. 82-92 (in Russ.). DOI: 10.1023/A: 1025894409190
[11] Nishimatsu C., Gurland J. Experimental survey of the deformation of the hard ductile two-phase alloy system W-Co. Trans. Amer. Soc. Metals, 1960, vol. 52, no. 2, pp. 469484.
[12] Doi H., Fujiwara Y, Miyake K., Oosawa Y. A systematic investigation of elastic moduli of WC-Co alloys. Met. Trans., 1970, vol. 1, iss. 5, pp. 1417-1425. DOI: 10.1007/BF02900264