Composite Material Properties Degradation under the Multi-Cycle Loading
Authors: Akulin P.V., Nasonov F.A. | Published: 08.04.2025 |
Published in issue: #1(152)/2025 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: composite materials, resource strength, rigidity and strength properties degradation, damage accumulation in the matrix, layered composite materials |
Abstract
The paper studies endurance strength of the composite material. The problem is relevant because most existing mathematical models describing the composite material properties degradation under the multi-cycle loading are empirical. A broad basis for the full-scale experiments is required to compute the composite material endurance strength. A full-scale experiment of the cantilever bending of a plate made of the layered composite material with the free end rigid loading was conducted. The total number of the sample loading cycles was 768,000. The sample was reinforced with the unidirectional carbon fiber and woven organoplastics, and had a complex laying pattern with the layers tapering along the sample length. During testing, a decrease in strength properties of the composite material layer package with the number of loading cycles was established. A decrease in stiffness indicated appearance and propagation of cracks in the material matrix leading to a decrease in the composite material ultimate physical characteristics and, as a consequence, could cause the premature structure failure. The obtained results make it possible to expand the basis for full-scale multi-cycle testing of the composite material subjected to the bending loading
Please cite this article in English as:
Akulin P.V., Nasonov F.A. Composite material properties degradation under the multi-cycle loading. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2025, no. 1 (152), pp. 4--13 (in Russ.). EDN: UXYWYU
References
[1] Reyfsnayder K. Povrezhdenie konstruktsiy iz kompozitov v protsesse ekspluatatsii [Damage to composite structures during operation]. V kn.: Prikladnaya mekhanika kompozitov [In: Applied mechanics of composites]. Moscow, Mir, 1989, pp. 108--142 (in Russ.).
[2] Krivorodov B.C., Leksovskiy A.M. Energy intensity of the fracture process and strength of composite materials. Mekhanika kompozitnykh materialov, 1987, no. 6, pp. 999--1006 (in Russ.).
[3] Highsmith A.L., Reifsnider K.L. Stiffness-reduction mechanisms in composite laminates. In: Damage in composite materials: basic mechanisms, accumulation, tolerance and characterization. Philadelphia, ASTM, 1982, pp. 103--117. DOI: https://doi.org/10.1520/STP34323S
[4] Jonson W.S. Mechanisms of fatigue damage in boron/aluminum composites. Technical Memorandum NASA-TM-81926. Washington, NASA, 1980.
[5] Vanin G.A. Mikromekhanika kompozitsionnykh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka Publ., 1985.
[6] Malmeyster A.K., Tamuzh V.P., Teters G.A. Soprotivlenie polimernykh i kompozitnykh materialov [Resistance of polymer and composite materials]. Riga, Zinatne Publ., 1980.
[7] Volkov S.D., Stavrov V.P. Statisticheskaya mekhanika kompozitnykh materialov [Statistical mechanics of composite materials]. Minsk, BGU im. V.I. Lenina, 1978.
[8] Kanaun S.K., Chudnovskiy A.I. On quasi-brittle fracture. Mekhanika tverdogo tela, 1970, no. 3, pp. 185--186 (in Russ.).
[9] Kiyalbaev D.A., Chudnovskiy A.I. Failure of solids under strain. J. Appl. Mech. Tech. Phys., 1970, vol. 11, no. 3, pp. 453--457. DOI: https://doi.org/10.1007/BF00908076
[10] Movchan A.A. Problema prochnosti tonkostennykh konstruktsiy [Strength problems of thin-walled structures]. V kn.: Voprosy prochnosti tonkostennykh aviatsionnykh konstruktsiy [In: Strength problems of thin-walled aircraft structures]. Moscow, MAI Publ., 1989, pp. 20--24 (in Russ.).
[11] Centea T., Grunenfelder L., Nutt S. A review of out-of-autoclave prepregs --- material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sc. Manuf., 2015, no. 70, pp. 132--154. DOI: https://doi.org/10.1016/j.compositesa.2014.09.029
[12] Patel N., Rohatgi V., Lee L.J. Micro-scale flow behavior, fiber wetting and void formation in liquid composite molding. Polymer Engineering and Science, 1995, vol. 35, no. 10, pp. 837--851. DOI: https://doi.org/10.1002/pen.760351006
[13] Murashov V.V., Rumyantsev A.F. Defects of monolithic parts and multilayer structures made of polymer composite materials and methods of their detection. Part 1. Defects of monolithic parts and multilayer structures made of polymer composite materials. Kontrol. Diagnostika, 2007, no. 4, pp. 23--32 (in Russ.). EDN: HZQACJ
[14] Sapozhnikov C.B. Defekty i prochnost armirovannykh plastikov [Defects and strength of reinforced plastics]. Chelyabinsk, ChGTU Publ., 1994.
[15] Senthil K., Arockiarajan A., Palaninathan R., et al. Defects in composite structures: its effects and prediction methods --- a comprehensive review. Compos. Struct., 2013, vol. 106, pp. 139--149. DOI: https://doi.org/10.1016/j.compstruct.2013.06.008
[16] Bokhoeva L.A. Osobennosti rascheta na prochnost elementov konstruktsiy iz izotropnykh i kompozitsionnykh materialov s dopustimymi defektami [Features of calculating the strength of structural elements made of isotropic and composite materials with acceptable defects]. Ulan-Ude, VSGTU Publ., 2007.
[17] Luat D.C., Lurie S.A., Dudchenko A.A. Modeling of degradation of the composite properties on cracking and delamination when subjected to static and cycling loading. Compos.: Mech. Comput. Appl.: Int. J., 2010, vol. 1, no. 4, pp. 315--331. DOI: https://doi.org/10.1615/CompMechComputApplIntJ.v1.i4.20
[18] Dudchenko A.A., Lurye S.A. Modelirovanie protsessov rosta povrezhdennosti i degradatsii mekhanicheskikh svoystv sloistykh kompozitov [Modeling of the processes of damage growth and degradation of mechanical properties of layered composites]. Moscow, MAI Publ., 2019.
[19] Dudchenko A.A., Lurie S.A., Halim K. Multiscale modeling on damage mechanics of laminated composite materials. Proc. Conf. on Damage in Composite Materials: Simulation and Non-Destructive Testing, 2006, pp. 23--26.
[20] Lurie S.A. On the entropy damage accumulation model of composite materials. Proc. Workshop on Computer Synthesis Structure and Properties of Advanced Composites, 1994, pp. 6--18.
[21] Soborejo A.-B.-O. Use of entropy principles in estimating reliability functions for creep rupture characteristics of engineering materials at high temperatures. Proc. Int. Conf. on Strength of Metals and Alloys, 1967, pp. 252--256.
[22] Movchan A.A. A micromechanical approach to the problem of describing the accumulation of anisotropic scattered damage. Mekhanika tverdogo tela, 1990, no. 3, pp. 115--123 (in Russ.).