A Wedge witha Heat-Resistant Lining in a High-Speed Airflow: Comparative Estimate of the Thermal State
Authors: Aliev Az.A., Zimin V.N. , Tovstonog V.A., Tomak V.I. | Published: 01.04.2022 |
Published in issue: #1(140)/2022 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: aircraft, aerodynamic heating, thermal protection, thermal condition, heat-resistant material |
Abstract
The efficiency and maximum height, speed and duration characteristics of the flight path of high-speed atmospheric aircraft are largely determined by the temperature regime of the most heat-stressed structural elements, suchas the edges of airframe airfoils. Their active thermal protection systems contribute to solving a number of complex scientific and technical problems, the most promising and simple solution being heat-resistant inorganic materials of the oxide class. However, their use for the structural design of the edge as a monolithic structural element is difficult both in terms of technology and strength characteristics, especially in the heat shock mode. In this regard, a promising solution is an edge in the form of a core made of heat-resistant and heat-conducting materials with a high-temperature oxide ceramic lining, which protects from the environmental oxidative effects and provides the permissible temperature regime of the core due to thermal resistance determined by the thickness of the lining. The study examines the temperature conditions of the wedge-shaped edge with a heat-conducting core and a heat-resistant ceramic lining. When choosing materials for the core and lining, it is important to preliminary calculate and estimate the parameters of the edge performance, taking into account the data on the thermophysical and physicomechanical properties of the materials. The study comparatively analyzes the thermal state of a prefabricated wedge with a heat-conducting core made of hafnium boride, which is an advanced heat-resistant material, and molybdenum and nickel, which are more technological and cheap metal materials, with a lining of oxide heat-resistant ceramics
Please cite this article in English as:
Aliev A.A., Zimin V.N., Tovstonog V.A., et al. A wedge with a heat-resistant lining in a high-speed airflow: comparative estimate of the thermal state. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 1 (140), pp. 4--23 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-1-4-23
References
[1] Surzhikov S.T., Tovstonog V.A., Yatsukhno D.A., et al. Atlas rezul’tatov komp’yuternogo modelirovaniya zadach vysokoskorostnoy aerotermodinamiki i aerofiziki [Atlas of computer modeling results for problems of high-speed aerodynamics and aerophysics]. Moscow, Bauman MSTU Publ., 2021.
[2] Surzhikov S.T. Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov [Computer aerophysics of descent space vehicles]. Moscow, FIZMATLIT Publ., 2018.
[3] Zemlyanskiy B.A., ed. Konvektivnyy teploobmen letatel’nykh apparatov [Convective heat transfer of aircraft]. Moscow, FIZMATLIT Publ., 2014.
[4] Tirskiy G.A., ed. Giperzvukovaya aerodinamika i teplomassoobmen spuskaemykh kosmicheskikh apparatov [Hypersound aerodynamics and heat and mass transfer of descent space vehicles]. Moscow, FIZMATLIT Publ., 2011.
[5] Surzhikov S.T. Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimental’nykh dannykh [Calculated aerodynamic study on blunt-nosed bodies hypersonic flow based on analysis of experimental data]. Moscow, IPMekh RAN Publ., 2011.
[6] Sorokin O.Yu., Grashchenkov D.V., Solntsev S.S., et al. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM [Proceedings of VIAM], 2014, no. 6 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2014-0-6-8-8
[7] Stolyarova V.L., Vorozhtsov V.A., Karachevtsev F.N. [Study on thermodynamics and evaporation of three-component systems based on hafnia for improving high-temperature exploitation characteristics of ceramic materials and coatings]. Vysokotemperaturnye keramicheskie kompozitsionnye materialy i zashchitnye pokrytiya. Mater. IV Vseros. nauch.-tekh. konf. [High-temperature ceramic composites and protective coatings. Proc. IV Russ. Sc.-Tech. Conf.]. Moscow, VIAM Publ., 2020, pp. 126--139 (in Russ.).
[8] Promakhov V.V., Zhukov I.A., Vorozhtsov S.A., et al. Heat-resistant ceramic composites based on zirconium dioxide. Novye ogneupory [New Refractories], 2015, no. 11, pp. 39--44 (in Russ.).
[9] Sokolov P.S., Arakcheev A.V., Mikhal’chik I.L., et al. Ultra-high-temperature ZrB2--SiC ceramics: the preparation and general properties. Novye ogneupory [New Refractories], 2017, no. 1, pp. 33--39 (in Russ.). DOI: https://doi.org/10.17073/1683-4518-2017-1-33-39
[10] Gorskiy V.V., ed. Matematicheskoe modelirovanie teplovykh i gazodinamicheskikh protsessov pri proektirovanii letatel’nykh apparatov [Mathematical modeling of thermal and gas-dynamic processes for aircraft design]. Moscow, Bauman MSTU Publ., 2011.
[11] Chevykalova L.A., Kelina I.Yu., Mikhal’chik I.L., et al. Investigation on spark plasma sintering (SPS) method for the formation of ultra-high-temperature ceramic material on base of zirconium diboride. Novye ogneupory [New Refractories], 2013, no. 11, pp. 31--38 (in Russ.).
[12] Lyamin Yu.B., Pryamilova E.N., Poylov V.Z., et al. The investigation of phases formed at spark plasma sintering of the compositions based on zirconium and hafnium borides. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2015, no. 3, pp. 91--103 (in Russ.).
[13] Roberto O., Giacomo C. Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials. Materials, 2013, vol. 6, no. 5, pp. 1566--1583. DOI: https://doi.org/10.3390/ma6051566
[14] Polezhaev Yu.V., Shishkov A.A. Gazodinamicheskie ispytaniya teplovoy zashchity [Gas-dynamic tests on thermal protection]. Moscow, Promedek Publ., 1992.
[15] Kharitonov A.M. Tekhnika i metody aerofizicheskogo eksperimenta. Aero-dinamicheskie truby i gazodinamicheskie ustanovki [Technics and methods of aero-physical experiment. Aerodynamic tubes and gas-dynamic plants]. Novosibirsk, NSTU Publ., 2005.
[16] Levin V.M., Karasev V.N., Kartovitskiy L.L., et al. Testing a dual-mode ramjet engine with kerosene combustion. Thermophys. Aeromech., 2015, vol. 22, no. 5, pp. 569--574. DOI: https://doi.org/10.1134/S0869864315050054
[17] Gubanov E.I., Kislykh V.V., Kusov A.L., et al. Experimental study of a heat transfer on the bottom area of a hypersonic aircraft model. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2014, no. 6, pp. 29--36 (in Russ.).
[18] Aliev A.A., Burkov A.S., Tovstonog V.A., et al. Thermal state of an aircraft aero-foil in a high-velocity air flow. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2021, no. 3 (138), pp. 4--24 (in Russ.).DOI: https://doi.org/10.18698/0236-3941-2021-3-4-24
[19] Alyamovskiy A.A., Odintsov E.V., Ponomarev A.A., et al. SolidWorks 2007/2008. Komp’yuternoe modelirovanie v inzhenernoy praktike [SolidWorks 2007/2008. Computer modeling in engineering practice]. St. Petersburg, BKhV Publ., 2008.
[20] Marmer E.N. Materialy dlya vysokotemperaturnykh vakuumnykh ustanovok [Materials for high-temperature vacuum plants]. Moscow, FIZMATLIT Publ., 2007.