Mathematical Modeling of Solar Panel Temperature Dynamics in Various Conditions of Orbital Space Missions

Authors: Astakhov N.N., Kargy D.L., Gorbulin V.I., Steganov G.B., Shubin D.A. Published: 06.12.2016
Published in issue: #6(111)/2016  

DOI: 10.18698/0236-3941-2016-6-4-21

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: solar light flux, reflected flux, albedo of the Earth, the temperature regime of the spacecraft, the terminator line

The purpose of this research was to model the process of temperature changes on the spacecraft surface. First, we analyzed the angular distance from the Sun projection on the Earth's surface to the projection of the spacecraft orbit plane. Then, we estimated the borders of the shadow, half-shadow and illuminated areas of the orbits, as well as the borders of the long shadowless phase of spacecraft (SC) flight. As a result, we show the analysis of the shadowless SC flight phases for the several types of the orbits. According to the sources describing the calculation of the shadow and illuminated orbit areas, we found the factors that were not previously taken into account when determining the orbit area borders: the precession of the spacecraft orbit, the Sun ecliptic daily shift. Next, we identified the parameters required for calculating the light intensity of solar batteries. In this paper we present a model of the energy flow from the direct light flux reflected from the Earth, the radiant flux and self-radiation of the Earth under the changes in light intensity, the underlying surface, the terminator line position. Moreover, we give an example of calculating the solar panel temperature regime of the spacecraft located on the GLONASS system orbit on the half-shadow orbit area, the area with the mean value of the time spent in the shade, as well as the orbit area with the maximum value of the time spent in the shade. Finally, we show the results of solving the differential equation describing the heat exchange by radiation, by the trapezium method. As a result of our work, the method for calculating the temperature regime of the spacecraft surface was developed.


[1] Gorbulin V.I., Kargu D.L., Astakhov N.N., Rymkevich P.P., Steganov G.B. Equivalent current loop model of spacecraft power supply system in inhomogeneous Earth magnetic field. Trudy Voenno-kosmicheskoy akademii imeni A.F. Mozhayskogo [Proc. Military Space Academy n.a. A.F. Mozhaisky], 2014, no. 645, pp. 149-153 (in Russ.).

[2] Gorbulin V.I., Radionov N.V., Astakhov N.N., Kargu D.L., Nemirov A.V. [Calculation methodology for weak force vector component of interaction between current loops of aircraft power system and inhomogeneous Earth magnetic field. Trudy Voenno-kosmicheskoy akademii imeni A.F. Mozhayskogo [Proc. Military Space Academy n.a. A.F. Mozhaisky], 2014, no. 643, pp. 88-91.

[3] Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Spacecraft heat exchange calculation]. Moscow, Mashinostroenie Publ., 1979. 208 p. (in Russ.).

[4] Malozemov V.V., Rozhnov V.F., Pravetskiy V.N. Sistemy zhizneobespecheniya ekipazhey letatel’nykh apparatov [Aircraft crew life-support system]. Moscow, Mashinostroenie Publ, 1986. 584 p.

[5] Malozemov V.V. Teplovoy rezhim kosmicheskikh apparatov [Spacecraft thermal conditions]. Moscow, Mashinostroenie Publ., 1980. 232 p.

[6] Rauschenbach H.S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion. New York, Van Nostrand Reinhold Co, 1980. 549 p. (Russ. ed.: Spravochnik po proektirovaniyu solnechnykh batarey. Moscow, Energoatomizdat Publ., 1983. 360 p.).

[7] Sudomoin P.D., Shabanov V.A., Platonov K.A., Kas’kov S.I. Research on thermal conditions of a small space vehicle. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical engineering], 2016, no. 2, pp. 28-44 (in Russ.). DOI: 10.18698/0236-3941-2016-2-28-44

[8] Sudomoin P.D., Platonov K.A., Shchukin S.A. Mathematical model of small spacecraft thermal state. Budushchee mashinostroeniya Rossii: Sb. trudov Sed’moy vseros. konf. molodykh uchenykh i spetsialistov [Future of Russian mechanical engineering: Proc. 7th Russ. conf. of young scientists and specialists]. Moscow, Bauman MSTU Publ., 2014, pp. 194-195 (in Russ.).

[9] Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose [Heat exchange in space]. Samara, SSU Publ, 2013. 56 p.

[10] Vlasov S.A., Mamon P.A. Teoriya poleta kosmicheskikh apparatov [Spacecraft flight theory]. Saint-Petersburg, VKA im. A.F. Mozhayskogo Publ., 2007. 435 p.

[11] Golyakov A.D., Lukashevskiy A.A., Smirnov V.V. Sistemy navigatsii kosmicheskikh apparatov [Spacecraft navigation systems]. Moscow, MO RF Publ., 2003. 267 p.

[12] Popovich P.R., Skrebushevskiy B.S. Ballisticheskoe proektirovanie kosmicheskikh system [Space system ballistic engineering]. Moscow, Mashinostroenie Publ., 1987. 239 p.

[13] Lysenko L.N., Pankratov I.A. Osnovy sputnikovoy navigatsii [Basic concepts of satellite navigation]. Moscow, Voenizdat Publ., 1988. 328 p.

[14] Urlich Yu.M., Ezhov S.A., Zhodzishskiy A.I., Kruglov A.V., Makhnenko Yu.Yu. Sovremennye tekhnologii navigatsii geostatsionarnykh sputnikov [Modern technologies of geostationary satellite navigation]. Moscow, Fizmatlit Publ., 2006. 280 p.

[15] Chebotarev V.E. On-orbit eclipse periods for artificial lunar satellite. Issledovaniya naukograda [The research of the science city], 2014, no. 1, pp. 12-18.

[16] Sidnyaev N.I., Savchenko V.P., Klochkova D.V. Physical principles and mathematical model of control of inductive resistance of companions in a planet ionosphere. Fizicheskie osnovy priborostroeniya [Physical bases of instrumentation], 2012, vol. 1, no. 4, pp. 98-105 (in Russ.).

[17] Sidnyaev N.I., Glushkov P.A. Long-period oscillations of aircraft at hypersonic speeds. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and computational methods], 2014, no. 1, pp. 99-114 (in Russ.). DOI: 10.18698/2309-3684-2014-1-99114