Influence of Injecting the Gasification Products of the Thermal Protection Coating of the SRE Nozzle Recessed Part on the Specific Impulse Losses
Authors: Shaydullin R.A., Sabirzyanov A.N. | Published: 09.04.2025 |
Published in issue: #1(152)/2025 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: combustion, ammonium perchlorate, polybutadiene rubber, simulation, decomposition, thermal protection coating, decomposition products injection, losses, chemical nonequi-librium, non-stationary ideal mixing reactor, flow reactor |
Abstract
The paper analyzes the process of thermochemical interaction of the combustion and decomposition products of the thermal protection coatings based on the phenol-formaldehyde resin in the homogeneous approximation. The thermal protection coating decomposition products are injected from the nozzle subsonic section contour. The decomposition products amount is determined by solving the conjugate gas-dynamic flow problem taking into account the kinetic interaction mechanisms and heat fluxes according to the Bartz model. The paper compares results of combustion computation using kinetic mechanisms of the ammonium perchlorate and polybutadiene rubber combustion with a variable formulation and in the thermodynamic equilibrium. It provides boundary conditions for homogeneous approximation of the solid fuel combustion with a simplified representation of the heat balance between solid, liquid and gas phases. Estimates of chemical transformations in the nozzle expanding part are considered in the one-dimensional and axisymmetric approximations. Thermochemical losses along the supersonic section of the nozzle are demonstrated taking into account decomposition of the thermal protection coating. The paper presents specific impulse losses with the CH4, CO, CO2 and H2 injection into the minimum cross-section in quantities of 0.01; 0.1 and 1 % of the gas inlet from the solid fuel surface without taking into account the stagnation temperature alteration to the minimum cross-section. The nature of the solid propellant rocket motor thrust alteration is determined with a correction for losses due to injection of the decomposition products of the thermal protection coating from the nozzle subsonic surface. The relationship is determined between the flow rate coefficient and the energy loss in the boundary layer
Please cite this article in English as:
Shaydullin R.A., Sabirzyanov A.N. Influence of injecting the gasification products of the thermal protection coating of the SRE nozzle recessed part on the specific impulse losses. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2025, no. 1 (152), pp. 59--82 (in Russ.). EDN: TPIUHM
References
[1] Beckstead M.W., Derr R.L., Price C.F. A model of composite solid-propellant combustion based on multiple flames. AIAA J., 1970, vol. 8, no. 12, pp. 2200--2207. DOI: https://doi.org/10.2514/3.6087
[2] Cai W.D., Thakre P., Yang V. Model of AP/HTPB composite propellant combustion in rocket-motor environments. Combust. Sc. Technol., 2008, vol. 180, no. 12, pp. 2143--2169. DOI: https://doi.org/10.1080/00102200802414915
[3] Surzhikov S.T., Kraer Kh. Computational models of combustion of nonmetallized heterogeneous propellant. High Temp., 2003, vol. 41, no. 1, pp. 95--128. EDN: LIEUGF. DOI: https://doi.org/10.1023/A:1022336923486
[4] Bryuster M.K., Mullen Dzh.K. Burning-rate behavior in aluminized wide-distribution AP composite propellants. Combust. Explos. Shock Waves, 2011, vol. 47, no. 2, pp. 200--208. DOI: https://doi.org/10.1134/S0010508211020092
[5] Ermolin N.E. Model for chemical reaction kinetics in perchloric acid-ammonia flames. Combust. Explos. Shock Waves, 1995, vol. 31, no. 5, pp. 555--565. DOI: https://doi.org/10.1007/BF00743807
[6] Shaydullin R.A., Sabirzyanov A.N. Combustion modeling of solid propellant base on ammonium perchlorate and polybutadiene in a hypothetical rocket engine. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2023, no. 6, pp. 276--287 (in Russ.). EDN: LQCOYE
[7] Sabirzyanov A.N., Shaydullin R.A. The impact of some factors of thermal protection material degradation on the discharge coefficient of the recessed nozzle. Russ. Aeronaut., 2023, vol. 66, no. 3, pp. 510--519. DOI: https://doi.org/10.3103/S1068799823030121
[8] Sokolovskiy M.I., Luzenin A.Yu. Konstruktsiya raketnykh dvigateley tverdogo topliva. Ch. 1. Konstruirovanie raketnykh dvigateley tverdogo topliva [Design of solid propellant rocket engines. Vol. 1. Design of solid propellant rocket engines]. Perm, PNIPU Publ., 2019.
[9] Gribanov V.M., Slobodchikov S.S., Potapenko A.I., et al. Calculation experimental method for determining energy consumption for physical-chemical transformations in polymer materials. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2012, vol. 130, no. 5, pp. 51--57 (in Russ.). EDN: QJGAPX
[10] Fakhrutnidov I.Kh., Kotelnikov A.V. Konstruktsiya i proektirovanie raketnykh dvigateley tverdogo topliva [Construction and design of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1987.
[11] Shishkov A.A., Panin S.D., Rumyantsev B.V. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva [Working processes in solid fuel rocket engines]. Moscow, Mashinostroenie Publ., 1989.
[12] Alemasov V.E., Dregalin A.F., Kryukov V.G., et al. Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energosilovykh ustanovkakh [Mathematical modelling of high-temperature processes in power plants]. Moscow, Nauka Publ. 1989.
[13] Trusov B.G. Modelirovanie khimicheskikh i fazovykh ravnovesiy pri vysokikh temperaturakh [Modelling of chemical and phase equilibria at high temperatures]. Moscow, BMSTU Publ., 1991.
[14] Belov G.V. Development of tools for thermodynamic calculation of rocket engine characteristics using the Julia programming language. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2021, no. 4 (139), pp. 80--93 (in Russ.). EDN: MTOVER. DOI: https://doi.org/10.18698/0236-3941-2021-4-80-93
[15] Alemasov V.E., Dregalin A.F., Cherenkov A.S. Osnovy teorii fiziko-khimicheskikh protsessov v teplovykh dvigatelyakh i energeticheskikh ustanovkakh [Fundamentals of the theory of physico-chemical processes in thermal engines and power plants]. Moscow, Khimiya Publ., 2000.
[16] Glushko V.P., ed. Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya. T. 1 [Thermodynamic and thermophysical properties of combustion products. Vol. 1]. Moscow, VINITI AN SSSR Publ., 1971.
[17] Sokolovskiy M.I., Luzenin A.Yu. Konstruktsiya raketnykh dvigateley tverdogo topliva. Ch. 2. Inzhenernye metody rascheta raketnykh dvigateley tverdogo topliva [Design of solid propellant rocket engines. P. 2. Engineering Methods of Calculation of Solid Propellant Rocket Engines]. Perm, PNIPU Publ., 2019.
[18] Spalding D.B. Combustion and mass transfer. Oxford, Pergamon Press, 1979.
[19] Gross M.-L. Two-dimensional modeling of AP/HTPB utilizing a vorticity formulation and one-dimensional modeling of AP and ADN formulation and one-dimensional modeling of AP and ADN. Provo, Brigham Young University, 2007.
[20] Menter F.-R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 1994, vol. 32, no. 8, pp. 1598--1605. DOI: https://doi.org/10.2514/3.12149
[21] Milekhin Yu.M., ed. Energetika raketnykh dvigateley na tverdom toplive [Energetics of rocket engines on solid fuel]. Moscow, Nauka Publ., 2013.
[22] Koroteev A.S., ed. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva [Gas-dynamic and thermophysical processes in solid fuel rocket engines]. Moscow, Mashinostroenie Publ., 2004.
[23] Timnat Y.M. Advanced chemical rocket propulsion. New York, Academic Press, 1987.
[24] Tanner M.-W. Multidimensional modeling of solid propellant burning rates and aluminum agglomeration and one-dimensional modeling of RDX/GAP and AP/HTPB. Provo, Brigham Young University, 2008.
[25] Jeppson M.B., Beckstead M.-W., Jing O. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. 36th Aerospace Sciences Meeting & Exhibit, 1998, no. AIAA-98-0447. DOI: https://doi.org/10.2514/6.1998-447