|

Methodology for Assessing Abrasive Particles Separation in the Axial Compressors Influencing Characteristics of the Aerial Vehicle Gas Turbine Engines: Dynamics Simulation in an Axial

Authors: Popov S.S., Cherkasov A.N., Klepikov D.S. Published: 08.04.2025
Published in issue: #1(152)/2025  

DOI:

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: erosion, wear, compressor, gas turbine engine, separator, CAD, ANSYS, CFD, CFX

Abstract

The paper describes effects of the aggressive environ-mental factors on the aircraft gas turbine engine compressor and identifies main causes and consequences of the two-component airflow passage containing solid particles through the compressor unit. It considers erosive wear, wear effect on the structural elements, their strength, compressor stability and the engine life as a whole. The currently used methods for preventing an erosive wear are assessed and a new method developed by the authors is proposed. The paper provides a detailed description and the operating principle of the proposed method. It describes a technique for assessing the abrasive particles separation effect on characteristics of the axial compressor of an aircraft gas turbine engine based on modern methods in numerical simulation of the blade machine and fluid dynamics equations implemented in the CFD packages. Geometric 3D models of the device and the axial compressor are developed, the spatial flow region is discretized by the finite element method. The paper provides mathematical description of the gas dynamics flow model with justification for the selected turbulence model. It determines the boundary conditions used in computing the model and main gas-dynamic characteristics of the blade machines. The paper presents simulation results, areas of the optimal operation modes, stable boundary and axial compressor locking, which would provide assessment of the separation effect on characteristics of the aerial vehicle gas turbine engine

Please cite this article in English as:

Popov S.S., Cherkasov A.N., Klepikov D.S. Methodology for assessing abrasive particles separation in the axial compressors influencing characteristics of the aerial vehicle gas turbine engines: dynamics simulation in an axial compressor. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2025, no. 1 (152), pp. 37--58 (in Russ.). EDN: VPWOWC

References

[1] Grigoryev V.A., Ponomarev B.A., eds. Vertoletnye gazoturbinnye dvigateli [Helicopter gas turbine engines]. Moscow, Mashinostroenie Publ., 2007.

[2] Maslenikov M.M., Bekhli Yu.G., Shalman Yu.I. Gazoturbinnye dvigateli dlya vertoletov [Gas turbine engines for helicopters]. Moscow, Mashinostroenie Publ., 1969.

[3] Perelman R.G. Erozionnaya prochnost detaley dvigateley i energoustanovok letatelnykh apparatov [Erosion strength of engine and power plants parts for aircraft]. Moscow, Mashinostroenie Publ., 1980.

[4] Enikeev G.G. Complex protection of the gas turbine engine, which is exploited in the dusty atmosphere and the marine environment. Vestnik UGATU, 2013, vol. 17, no. 3, pp. 41--48 (in Russ.). EDN: RDUQCV

[5] Sitnitskiy Yu.Ya., Sitnitskiy A.Yu. Vozdukhozabornoe ustroystvo dlya vertoletnogo gazoturbinnogo dvigatelya, udalyayushchee iz vozdukha chastitsy peska i pyli [Air intake device for helicopter gas turbine engine, removing particles of sand and dust from air]. Patent RU 2742697. Appl. 15.06.2020, publ. 09.02.2021 (in Russ.). EDN: GRJDZU

[6] Korolev S.D., Demyanyuk S.A., Merkushkin E.V. Pylezashchitnoe ustroystvo dvigatelya (varianty) [Engine dust-protecting device (versions)]. Patent RU 2638692. Appl. 21.03.2016, publ. 15.12.2017 (in Russ.). EDN: GRJDZU

[7] Krivosheev I.A., Strugovets S.A., Kamaeva R.F. Analysis of influence of dust particles on the parameters of steps axial compressor. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh State Technical University], 2011, vol. 7, no. 7, pp. 35--40 (in Russ.). EDN: NVAMML

[8] Gumerov A.V. Predelnoe sostoyanie osevogo kompressora GTD v usloviyakh ekspluatatsii v zapylennoy atmosfere. Dis. kand. tekh. nauk [Limit state of an axial compressor of a gas turbine engine under operating conditions in a dusty atmosphere. Сand. Sc. (Eng.). Diss.]. Ufa, UfGATU, 2011 (in Russ.). EDN: QHNSMX

[9] Popov S.S., Cherkasov A.N., Belovodskiy Yu.P. Osevoy compressor [Axial compressor]. Patent RU 2801253. Appl. 21.12.2022, publ. 04.08.2023 (in Russ.). EDN: XVQFJO

[10] Eliseev Yu.S., Poklad V.A., Eliseev D.N. Application of information technologies at designing газотурбинных installations. Trudy MAI, 2012, no. 56 (in Russ.).EDN: OYBDMZ

[11] Dashchenko A.F., Lazareva D.V., Suryaninov N.G. ANSYS v zadachakh inzhenernoy mekhaniki [ANSYS in problems of engineering mechanics]. Kharkov, Burun i K Publ., 2011 (in Russ.).

[12] Blinov V.L. Razrabotka printsipov parametricheskogo profilirovaniya ploskikh reshetok osevykh kompressorov GTU na osnovanii rezultatov mnogokriterialnoy optimizatsii. Dis. kand. tekh. nauk [Development of principles of parametric profiling of flat grids of axial compressors GTI based on the results of multi-criteria optimization. Cand. Sc. (Eng.). Diss.]. Ekaterinburg, UrFU, 2015 (in Russ.). EDN: DBUIRX

[13] Marenina L.N., Solovyeva O.A., Galerkin Yu.B., et al. Development of a parametrized model and calculation of a power unit axial compressor. Materialovedenie. Energetika [Materials Science. Power Engineering], 2020, vol. 26, no. 4, pp. 100--111 (in Russ.). EDN: WMUUQX. DOI: https://doi.org/10.18721/JEST.26408

[14] Shabliy L.S., Kolmakova D.A., Krivtsov A.V. Parametric modeling of blade machines during optimization. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2013, vol. 15, no. 6-4, pp. 1013--1018 (in Russ.). EDN: SJUXFJ

[15] Koval V.A., Kovaleva E.A., Litvinov E.V. Analysis on possibility to use ANSYS CFX 3d software for numerical experiment on compressor steps. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2009, no. 8, pp. 19--23 (in Russ.). EDN: LAEVBR

[16] Akhmedzyanov D.A., Kishalov A.E., Sukhanov A.V., et al. ANSYS CFX application for GTE axial compressors characterization. Vestnik UGATU, 2012, vol. 16, no. 8, pp. 15--22 (in Russ.). EDN: PXAKUB

[17] Martirosyan A.A., Mileshin V.I., Druzhinin Ya.M., et al. Сomputational and experimental investigation of aerodynamic characteristics of a counter-rotating fan using various software packages. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 2 (125), pp. 115--130 (in Russ.). EDN: ZHBJJB

[18] Molchanov A.M. Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena [Mathematical modeling of gas dynamics and heat and mass transfer problems]. Moscow, MAI Publ., 2013.

[19] Yun A.A. Modelirovanie turbulentnykh techeniy [Modeling of turbulent flows]. Moscow, Librokom Publ., 2010.

[20] Komarov O.V., Sedunin V.A., Blinov V.L., et al. Verification of numerical simulation of air flow in axial compressor stage. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2016, no. 1 (106), pp. 54--67 (in Russ.). EDN: VNUGOZ. DOI: https://doi.org/10.18698/02363941201615467

[21] Kirsanov E.D., Galyautdinov M.I., Abdurashitov V.R., et al. [Study on influence of turbulence models on the accuracy of three-dimensional calculation of an axial compressor in ANSYS CFX]. Novye impulsy razvitiya: voprosy nauchnykh issledovaniy. Mater. III Mezhdunar. nauch.-prakt. konf. [New Development Impulses: Issues of Scientific Research. Proc. III Int. Sc. Pract. Conf.]. Saratov, Tsifrovaya nauka Publ., 2020, pp. 41--44 (in Russ.). EDN: GCUGEA

[22] Puzanova A.V., Serkov S.A. [Comparison of experimental data with the results of numerical simulation of the flow to the stage of the axial compressor received with using k--ε and SST models of turbulence]. Tr. III Nauch.-tekh. konf. molodykh uchenykh Uralskogo energeticheskogo instituta [Proc. III Sc.-Tach. Conf. of Young Scientists of the Ural Energy Institute]. Ekaterinburg, UrFU Publ, 2018, pp. 126--131 (in Russ.). EDN: YXLFXF

[23] Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 1994, vol. 32, no. 8, pp. 1598--1605. DOI: https://doi.org/10.2514/3.12149

[24] Wilcox D.C. Turbulence modeling for CFD. La Canada Flintridge, DCW Industries, 2006.

[25] Wilcox D.C. Formulation of the k--ω turbulence model revisited. AIAA J., 2008, vol. 46, no. 11, pp. 2823--2838. DOI: https://doi.org/10.2514/1.36541

[26] Fedorov R.M. Kharakteristiki osevykh kompressorov [Characteristics of axial compressors]. Voronezh, Nauchnaya kniga Publ., 2015.