Algorithm for Computing the Solid Propellant Rocket Engine with Ballistic Charge in the Aerospace Technology Track Testing
Authors: Astahov S.A., Kataev A.V., Sizov G.A. | Published: 07.07.2024 |
Published in issue: #2(149)/2024 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: rocket track, ballistic solid propellant, specific impulse, strength, stiffness, mass limitations |
Abstract
The solid fuel rocket engines are required in high-speed testing of the aerospace technology, as they are characterized by high thrust levels, high fuel efficiency and at the same time, possess the minimum possible overall dimensions and weight. The paper presents results of a computational parametric study to determine rational characteristics of a solid propellant engine of the required thrust with strict limitations on weight and overall dimensions. Ground tests of the rocket and aviation systems under conditions close to the full-scale testing were carried out using the test rail installations (tracks). Test object and the solid propellant rocket engine were installed on the movable track carriage. This trend is an established global practice. To increase test speed to 1500 m/s, a significant increase in the solid fuel rocket engine thrust is required. Theoretical study on vibration and shock effects on the design of a rocket carriage with test object under conditions of using the existing rocket track is an urgent task. Important place is given to the issues of the fuel blocks strength and rigidity in order to reduce the combustion chamber walls thickness. Increasing the fuel energy efficiency in a solid fuel rocket engine appears to be also one of the tasks in modern research
Please cite this article in English as:
Astahov S.A., Kataev A.V., Sizov G.A. Algorithm for computing the solid propellant rocket engine with ballistic charge in the aerospace technology track testing. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 2 (149), pp. 8--27 (in Russ.). EDN: LCEKYC
References
[1] Abugov D.I., Bobylev V.M. Teoriya i raschet raketnykh dvigateley tverdogo topliva [Theory and calculation of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1987.
[2] Orlov B.V., Mazing G.Yu. Termodinamicheskie i ballisticheskie osnovy proektirovaniya raketnykh dvigateley na tverdom toplive [Thermodynamic and ballistic bases of rocket propellant design]. Moscow, Mashinostroenie Publ., 1979.
[3] Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruktsiya i proektirovanie raketnykh dvigateley tverdogo topliva [Construction and design of solid fuel rocket engines]. Moscow, Mashinostroenie Publ., 1987.
[4] Erokhin B.T. Teoreticheskie osnovy proektirovaniya RDTT [Theoretical bases of designing rocket and tubular tubes]. Moscow, Mashinostroenie Publ., 1982.
[5] Lipanov A.M., Aliev A.V. Proektirovanie raketnykh dvigateley tverdogo topliva [Design of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1995.
[6] Astakhov S.A., Biryukov V.I., Sizov G.A. Procedure for determining the acoustic characteristics of combustion chambers of a rocket engine for solid fuel. Sibirskiy aerokosmicheskiy zhurnal [Siberian Aerospace Journal], 2021, vol. 22, no. 2, pp. 302--315 (in Russ.). DOI: https://doi.org/10.31772/2712-8970-2021-22-2-302-315
[7] Kouts F.L., Kharton M.D. Analysis of stability of work process in designing rocket propulsion tubes. Voprosy raketnoy tekhniki, 1969, no. 7, pp. 11--28 (in Russ.).
[8] Barrer M., Nado L., Lyuyner I. Studies of unstable combustion of rocket propellants. Voprosy raketnoy tekhniki, 1973, no. 7, pp. 10--28 (in Russ.).
[9] Yanovskiy L.S., ed. Pryamotochnye vozdushno-reaktivnye dvigateli na energoemkikh kondensirovannykh materialakh [Direct-flow air-jet engines on energy-intensive condensed materials]. Moscow, TsIAM Publ., 2020.
[10] Timoshenko S., Goodier J.N. Theory of elasticity. New York, McGraw-Hill, 1969.
[11] Wise J.S. The prediction of limiting pressures in simmetrical axiale-uniform, solid propellant configurations. Bull. 13th Meet. Joint Army-Navy-Air Force Solid Propellant Group, 1957, vol. 3, pp. 707--753.
[12] Smith T.L. Solid propellants...Elastomeric-binder and mechanical-property requirements for solid propellants. Ind. Eng. Chem., 1960, vol. 52, no. 9, pp. 776--780. DOI: https://doi.org/10.1021/ie50609a028
[13] Williams M.L. The strain analysis of solid propellant grains. JAS, 1960, vol. 27, no. 8, pp. 574--586. DOI: https://doi.org/10.2514/8.8655
[14] Shishkov A.A., Panin S.D., Rumyantsev B.V. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva [Operating processes in solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1989.
[15] Talin D.D. Fiziko-khimicheskie svoystva vzryvchatykh veshchestv, porokhov i tverdykh raketnykh topliv [Physical and chemical properties of explosives, powder and solid rocket fuel]. Perm, PSTU Publ., 2007.
[16] Kalinichev V.A., Yagodnikov D.A. Tekhnologiya proizvodstva raketnykh dvigateley tverdogo topliva [Production Technology of solid propellant rocket engines]. Moscow, BMSTU Publ., 2011.
[17] Zhukov B.P., ed. Energeticheskie kondensirovannye sistemy. Kratkiy entsiklopedicheskiy slovar [Power condensed systems. Concise encyclopedic dictionary]. Moscow, Yanus K Publ., 2000.
[18] Zhegrov E.F., Milekhin Yu.M., Berkovskaya E.V. Khimiya i tekhnologiya ballistitnykh porokhov, tverdykh raketnykh i spetsialnykh topliv. T. 1, 2 [Chemistry and technology of ballistic powder, solid rocket powders and special fuels. Vol. 1, 2]. Moscow, RITs MGUP im. I. Fedorova Publ., 2011.
[19] Tsutsuran V.I., Abramov P.I. Osnovy tekhnologii porokhov i zaryadov tverdykh raketnykh topliv [Fundamentals of technology of powder and charges of solid rocket fuels]. Moscow, VA RVSN Publ., 2002.
[20] Freudental A.M., Geiringer H. The mathematical theories of the inelastic continuum. In: Elasticity and plasticity. Berlin, Springer, Verlag, 1958, pp. 229--433. DOI: https://doi.org/10.1007/978-3-662-43081-1_3
[21] Trusov B.G. Programmnaya sistema Terra dlya modelirovaniya fazovykh i khimicheskikh ravnovesiy v plazmokhimicheskikh sistemakh [Terra software system for modeling phase and chemical equilibria in plasma chemical systems]. Moscow, BMSTU Publ., 2013.