Research of Solid Hydrocarbon Fuel Gasification Products Mixing with High-Enthalpy Gas Flux in Uniform Cross-Section Ducts

Authors: Fedotova K.V., Aref'ev K.Yu., Sukhov A.V., Yanovsky L.S. Published: 03.08.2017
Published in issue: #4(115)/2017  

DOI: 10.18698/0236-3941-2017-4-11-27

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: numerical simulation, gas fluxes mixing, gasification products of solid hydrocarbon fuel, CFD, semiempirical turbulence model, pressure pulsations in supersonic gas jet

This paper presents the analysis of numerical simulation results for solid hydrocarbon fuel (SHF) gasification products mixing processes with subsonic high-enthalpy oxygen-containing gas (HEOG) flux in the uniform cross-section ducts. Mathematical model of mixing efficiency estimation for supersonic SHF gasification products jets with subsonic HEOG flux is developed based on numerical solution of a full system of Favre averaged Navier - Stokes equations for viscid, heat-conducting gas in 3D transient definition together with Transition SST turbulence model. Different methods of mixing process intensification are examined such as the number of SHF gasification products blast nozzles, SHF gasification products jet feed direction and pressure pulsations. The obtained results may be useful at preconceptual study phase for operating process efficiency estimation of gas mixture diffusion combustion in the uniform cross-section ducts. On the ground of parametric analysis by the developed mathematical model the most effective mixing process (ηmix = 0,9...0,95) is implemented when fuel-air equivalence ratio is over the range 0,5 to 1, relative dynamic velocity pressure is approximately 100 and the number of gas jets ratio to duct width is over the range of 3,6 to 5,0 piece/m. SHF gasification products jet feed direction can improve mixing efficiency up to 7...12% when pointed against HEOG flux at angle of 45° compared with perpendicular and 45° along the main flux direction. The pressure pulsations of SHF gasification products jet with frequency f < 15 kHz and relative amplitude А > 0,1 can improve mixing up to 10...15%.


[1] Van Wie D., D’Alessio S., White M. Hypersonic airbreathing propulsion. Johns Hopkins APL Technical Digest, 2005, vol. 26, no. 4, pp. 430-437. Available at: http://techdigest.jhuapl.edu/TD/td2604/VanWie.pdf

[2] Aleksandrov V.N., Bytskevich V.M., Verkholomov V.K. et al. Integral’nye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta [Intagrated ramjet engines on solid propellant. Theory and calculation fundamentals]. Moscow, Akademkniga Publ., 2006. 343 p.

[3] Kurth G., Bauer C., Hopfe N. Performance assessment for a throttleable ducted rocket powered lower tier interceptor. 51st AIAA/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, 2015. DOI: 10.2514/6.2015-4234 Available at: https://arc.aiaa.org/doi/abs/10.2514/6.2015-4234

[4] Piralishvilli Sh.A., Polyaev V.M., Sergeev M.N. Vikhrevoy effekt. Eksperiment, teoriya, tekhnicheskie resheniya [Swirling effect. Experiment, theory, engineering solutions]. Moscow, UNPTs "Energomash" Publ., 2000. 412 p.

[5] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow, Nauka Publ., 1991. 600 p.

[6] Gus’kov O.V., Kopchenov V.I. Numerical study of channel flow structure under supersonic input conditions. Aeromekhanika i gazovaya dinamika, 2001, no. 1, pp. 28-39 (in Russ.).

[7] Sosounov V.A. Research and development of ramjets/Ramrockets. Part 1. Integral solid propellant ramrockets. In: Research and Development of Ram/Scramjets and Turboramjets in Russia. Loughton. 1994. Pp. 10-12.

[8] Hamed A., Das K., Basu D. Numerical simulation of unsteady flow in resonance tube. AIAA, 2002, no. 1118, pp. 1-14.

[9] Aleksandrov V.Yu., Aref ’ev K.Yu., Il’chenko M.A. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space. Thermophysics and Aeromechanics, 2016, vol. 23, no. 4, pp. 513-521. DOI: 10.1134/S0869864316040041 Available at: http://link.springer.com/article/10.1134/S0869864316040041

[10] Ginevskiy A.S., Vlasov E.V., Karavosov R.K. Akusticheskoe upravlenie turbulentnymi struyami [Acoustic control on turbulent jets]. Moscow, Fizmatlit Publ., 2001. 232 p.

[11] Ferziger J.H., Peric M. Computational methods for fluid dynamics. Berlin, Germany, 2002.

[12] Wilcox D.C. Turbulence modeling for CFD. DCW Industries, 2006.

[13] Garbaruk A.V., Strelets M.Kh., Travin A.K., Shur M.L. Sovremennye podkhody k modelirovaniyu turbulentnosti [Modern approaches to the turbulence simulation]. Sankt-Petersburg, SPbSTU Publ., 2016. 234 p.

[14] Volkov K.N., Emel’yanov V.N. Modelirovanie krupnykh vikhrey v raschetakh turbulentnykh techeniy [Large vortex simulation in calculations of turbulent flow]. Moscow, Fizmatlit Publ., 2008. 368 p.

[15] Favre A.J. Review of space-time correlations in turbulent fluids. Journal of Applied Mechanics, 1965, vol. 32, no. 2, pp. 241-257.

[16] Frik P.G. Turbulentnost’: podkhody i modeli [Turbulence: approaches and models]. Moscow, NITs RKhD Publ., 2010. 107 p.

[17] Il’ina E.E., Il’ina T.E., Denisenko P.V. Applicability of various differential turbulence models in the calculation of supersonic gas jets. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and technical journal of information technologies, mechanics and optics], 2015, vol. 15, no. 3, pp. 500-508 (in Russ.). DOI: 10.17586/2226-1494-2015-15-3-500-508 Available at: http://ntv.ifmo.ru/ru/article/13550/interferenciya_skachkov_uplotneniya_odnogo_napravleniya.htm

[18] Aver’kov I.S., Aleksandrov V.Yu., Aref ’ev K.Yu., Voronetskiy A.V., Gus’kov O.V., Prokhorov A.N., Yanovskiy L.S. The influence of combustion efficiency on the characteristics of ramjets. High Temperature, 2016, vol. 54, no. 6, pp. 882-891. DOI: 10.1134/S0018151X16050047 Available at: http://link.springer.com/article/10.1134/S0018151X16050047

[19] Annushkin Yu.M. Basic rules governing the burning of turbulent jets of hydrogen in air channels. Combustion, Explosion and Shock Waves, 1981, vol. 17, no. 4, pp. 400-411. DOI: 10.1007/BF00761209 Available at: http://link.springer.com/article/10.1007/BF00761209

[20] Aleksandrov V.Yu., Kukshinov N.V. Modified combustion efficiency curve for high-velocity model combustors integrated with the inlet. Combustion, Explosion and Shock Waves, 2016, vol. 52, no. 3, pp. 281-285. DOI: 10.1134/S0010508216030047 Available at: http://link.springer.com/article/10.1134/S0010508216030047