|

Technological Aspects of Improving the Power Gyroscope Performance Characteristics of Space Vehicles for Remote Earth Sensing Systems

Authors: Khrutskaya M.V. Published: 13.09.2022
Published in issue: #3(142)/2022  

DOI: 10.18698/0236-3941-2022-3-71-83

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: natural frequency, axial preload, ball bearing, power gyroscope, statistical methods, process control, build quality

Abstract

The article considers the problems of controlling the preliminary axial load on the ball-bearing support of a power gyroscope rotor by the frequency method. The study of the effect of the power gyroscope rotor rotation speed on the natural oscillation frequency under varying environmental conditions was performed on a special installation that combines a thermal, vacuum chambers and vibration installation using statistical methods for identifying and optimizing complex systems. The relationship between the natural frequency of the rotor forced oscillations and the speed of rotation, ambient temperature and pressure is identified in the form of a mathematical model, with the effect of each parameter under study being of nonlinear character. It is found that the effect of the rotation speed on the natural frequency of power gyroscope rotor oscillations changes significantly at different values of ambient temperature and pressure, and the value of the natural frequency is maximum at the static position of the rotor. The results of the study allow performing natural frequency technological control at different stages of instrument assembling under controlled conditions and can be used in the development of methods for controlling the frequency characteristics of inertial actuators of orientation and stabilization systems

Please cite this article in English as:

Khrutskaya M.V. Technological aspects of improving the power gyroscope performance characteristics of space vehicles for remote Earth sensing systems. Heraldof the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 3 (142), pp. 71--83 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-3-71-83

References

[1] Zhuravlev V.F., Bal’mont V.B. Mekhanika sharikopodshipnikov giroskopov [Gyro ball bearing mechanics]. Moscow, Mashinostroenie Publ., 1986.

[2] Bal’mont V.B., Matveev V.A. Opory kacheniya priborov [Instrument rolling bearings]. Moscow, Mashinostroenie Publ., 1984.

[3] Khokhlov B.A., Syrovatchenko P.V., Chernyshev E.P., et al. Tekhnologiya proizvodstva giroskopicheskikh priborov [Gyroscopic production technology]. Moscow, Mashinostroenie Publ., 1969.

[4] Kovalev M.P. Opory i podvesy giroskopicheskikh ustroystv [Supports and suspensions of gyroscopic devices]. Moscow, Mashinostroenie Publ., 1970.

[5] Yavlenskiy K.N., Naryshkin V.N., Chaadaeva E.E., eds. Pribornye sharikovye podshipniki [Instrument ball bearings]. Moscow, Mashinostroenie Publ., 1981.

[6] Khrutskaya M.V., Kamaldinov A.M. Increasing the lifetime of power gyroscopes and momentum wheels. Vestnik SGAU, 2013, no. 4, pp. 270--278 (in Russ.). DOI: https://doi.org/10.18287/1998-6629-2013-0-4(42)-270-278

[7] Korablev S.S., Shapin V.I., Filatov Yu.E. Vibrodiagnostika v pretsizionnom priborostroenii [Vibration diagnostics in precision instrument making]. Leningrad, Mashinostroenie Publ., 1984.

[8] Frolov K.V., ed. Vibratsii v tekhnike. T. 6. Zashchita ot vibratsiy i udarov [Vibrations in technology. Vol. 6. Vibration and shock protection]. Moscow, Mashinostroenie Publ., 1981.

[9] Bal’mont V.B., Gorelik I.G., Levin A.M. Influence of rotation frequency on elastic deformation properties of spindle ball bearings. Stanki i instrument, 1986, no. 7, pp. 15--17 (in Russ.).

[10] Bal’mont V.B. Statics and dynamics of high-precision ball bearing units. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 1990, no. 1, pp. 55--69 (in Russ.).

[11] Frolov A.V., Smirnov S.V. Simulating variable quasistatic stiffness of machine tool spindle unit. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2018, no. 6 (123), pp. 44--59 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2018-6-44-59

[12] Hicks C.R. Fundamental concepts in the design of experiments. New York, Holt, Rinehart and Winston, 1964.

[13] Adler Yu.P., Markova E.V., Granovskiy Yu.P. Planirovanie eksperimenta pri poiske optimal’nykh usloviy [Design of experiments in search of optimal conditions]. Moscow, Nauka Publ., 1976.

[14] Kamaldinov A.M., Khrutskaya M.V., Vinogradov D.V. Ustanovka dlya izmereniya sobstvennoy chastoty kolebaniy rotorov silovykh giroskopov [Plant to measure internal frequency of oscillations of rotors of power gyroscopes]. Patent RU 2515424. Appl. 18.10.2012, publ. 10.05.2014 (in Russ.).

[15] Spiridonov A.A. Planirovanie eksperimenta pri issledovanii tekhnologicheskikh protsessov [Design of experiments in the research of technological processes]. Moscow, Mashinostroenie Publ., 1981.