Numerical Computation of Specific Impulse and Internal Flow Parameters in Solid Fuel Rocket Motors with Two-Phase Сombustion Products
Авторы: Sultanov T.S., Glebov G.A. | Опубликовано: 08.09.2021 |
Опубликовано в выпуске: #3(138)/2021 | |
Раздел: Авиационная и ракетно-космическая техника | Рубрика: Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов | |
Ключевые слова: solid propellant rocket engines, numerical methods, two-phase flows, specific impulse, supersonic nozzle |
Eulerian --- Lagrangian method was used in the Fluent computational fluid dynamics system to calculate motion of the two-phase combustion products in the solid fuel rocket motor combustion chamber and nozzle. Condensed phase is assumed to consist of spherical particles with the same diameter, which dimensions are not changing along the motion trajectory. Flows with particle diameters of 3, 5, 7, 9, and 11 μm were investigated. Four versions of the engine combustion chamber configuration were examined: with slotted and smooth cylindrical charge channels, each with external and submerged nozzles. Gas flow and particle trajectories were calculated starting from the solid fuel surface and to the nozzle exit. Volumetric fields of particle concentrations, condensed phase velocities and temperatures, as well as turbulence degree in the solid propellant rocket engine flow duct were obtained. Values of particles velocity and temperature lag from the gas phase along the nozzle length were received. Influence of the charge channel shape, degree of the nozzle submersion and of the condensate particles size on the solid propellant rocket engine specific impulse were determined, and losses were estimated in comparison with the case of ideal flow
Литература
[1] Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigateley [Theory of rocket engines]. Moscow, Mashinostroenie Publ., 1969.
[2] Glushko V.P., ed. Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya. T. 1 [Thermodynamical and thermophysical properties of combustion products. Vol. 1]. Moscow, AN SSSR Publ., 1971.
[3] Sorkin R.E., ed. Gazotermodinamika raketnykh dvigateley na tverdom toplive [Thermogasdynamics of solid fuel rocket engines]. Moscow, Nauka Publ., 1967.
[4] Timnat Y.M. Advanced chemical rocket propulsion. New York, Academic Press, 1987.
[5] Abugov D.I., Bobylev V.M. Teoriya i raschet raketnykh dvigateley tverdogo topliva [Theory and calculation of solid fuel rocket engines]. Moscow, Mashinostroenie Publ., 1987.
[6] Shishkov A.A., Panin S.D., Rumyantsev B.V. Rabochie protsessy v RDTT [Solid fuel rocket engines internal processes]. Moscow, Mashinostroenie Publ., 1989.
[7] Erokhin B.T. Teoreticheskie osnovy proektirovaniya RDTT [Theoretical foundation of solid fuel rocket engines design]. Moscow, Mashinostroenie Publ., 1982.
[8] Dobrovol’skiy M.V. Zhidkostnye raketnye dvigateli [Liquid fuel rocket engines]. Moscow, Bauman MSTU Publ., 2005.
[9] Kutateladze S.S., Leont’yev A.I. Teplomassobmen i trenie v turbulentnom pogranichnom sloe [Heat transfer and friction in turbulent boundary layer]. Moscow, Energoatomizdat Publ., 1985.
[10] Avduevskiy V.S., Koshkin V.K., eds. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Foundations of heat transfer in airspace engineering]. Moscow, Mashinostroenie Publ., 1992.
[11] Koroteev A.S., ed. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva [Gas dynamics and heat transfer processes in solid fuel rocket engines]. Moscow, Mashinostroenie Publ., 2004.
[12] Taylor J.R. Introduction to error analysis. CA, Mill Valley, University Science Books, 1982.
[13] Trusov B.G. Modelirovanie khimicheskikh i fazovykh ravnovesiy pri vysokikh temperaturakh [Modelling of chemical and phase equilibrium at high temperatures]. Moscow, Bauman MSTU Publ., 1991.
[14] Savel’yev S.K., Emel’yanov V.N., Benderskiy B.Ya. Eksperimental’nye metody issledovaniya gazodinamiki RDTT [Experimental methods of solid fuel rocket motors gas dynamics research]. St. Petersburg, Nedra Publ., 2007.
[15] Volkov K.N., Emel’yanov V.N. Techeniya gaza s chastitsami [Flow of gas with particles]. Moscow, FIZMATLIT Publ., 2008.
[16] Morsi S.A., Alexander A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech., 1972, vol. 55, no. 2, pp. 193--208. DOI: https://doi.org/10.1017/S0022112072001806
[17] Ranz W.E., Marshall W.R. Evaportaion from drops. Chem. Eng. Prog., 1952, vol. 48, no. 3, pp. 141--146.
[18] Apte S.V., Mahesh K., Lundgren T. Accounting for finite-size effects in simulations of disperse particle-laden flows. Int. J. Multiph. Flow, 2008, vol. 34, no. 3, pp. 260--271. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.005
[19] Shimada T., Daimon Y., Sekino N. Numerical simulation of flow inside a solid rocket motor by eulerian-hybrid approach with relation to nozzle inlet ablation. Proc. 8th Int. Symp. on Experimental and Computational Aerothermodynamics of Internal Flows, 2007, paper ISAIF8-00109.
[20] Soskin M.S., ed. Lazernaya anemometriya, distantsionnaya spektroskopiya i interferometriya [Laser anemometry, ranged spectroscopy and interferometry]. Kiev, Naukova dumka Publ., 1985.