|

The Influence of Facets Within the Inlet Edge of Cylindrical Probe on the Discharge Coefficient

Authors: Kuznetsov V.S., Shablovskiy A.S., Yarots V.V. Published: 02.10.2014
Published in issue: #5(98)/2014  

DOI:

 
Category: Simulation of Processes  
Keywords: caps, channel geometry, flow coefficient, hydrodynamics

Using a special optical microscope an analysis was performed for the geometry of the inlet edge using the research models of cylindrical caps. The presence of chamfer on the inlet edge of all models of cylindrical caps was revealed. The graphs of a change of flow coefficient determined for an area which corresponds to the outer diameter of the chamfer as the function vs Reynolds number were experimentally obtained. The fact that in this case the values of the flow coefficients of all investigated cylindrical caps are in good agreement with the value of this coefficient for holes in a thin wall was obtained from the analysis of these graphs. Research results allowed explaining the mechanism of influence of chamfer on the hydrodynamic characteristics of liquid outflow from caps.

References

[1] Al’tshul’ A.D. Gidravlicheskie soprotivlenija [Hydraulic resistance]. Moscow, Nedra Publ., 1982. 224 p.

[2] Bashta T.M., Rudnev S.S., Nekrasov B.B. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydraulic machine and hydraulic actuator]. Moscow, Al’jans Publ., 2010. 423 p.

[3] Kuznetsov V.S., Shablovskiy A.S., Troshin G.A. Experimental study of the hydrodynamic parameters of liquid flow in the throttle channel. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" MGTU im. N.E. Baumana [El. Sc.-Tech. Publ. "Science and Education" of Bauman MSTU], Moscow, MGTU im. N.E. Baumana Publ., 2011, no. 10 (in Russ.). Available at: http://technomag.edu.ru/doc/230378.html (accessed 07.07.2014).

[4] Shablovskiy A.S., Kuznetsov V.S., Yarots V.V. Comparison of the results of theoretical and experimental studies of the compression rate of fluid flow in flat slit-shaped channel. Izv. MGTU "MAMI", Ser. 3: Estestv. Nauki [Bull. MSU ME, Ser. 3: Nat. Sci.], 2013, vol. 3, no. 1 (15), pp. 135-138 (in Russ.).

[5] Kuznetsov V.S. Study of fluid outflow through throttle channels with cavitation initiation. Vest. Don. Gos. Tehn. Un. (DGTU) [Vestnik of DSTU], 2011, no. 1 (52), pp. 57-62 (in Russ.).

[6] Belenkov Ju.A., Lepyoshkin A.V., Mihaylin A.A. Gidravlika i gidropnevmoprivod [Hydraulics and hydraulic pneumatic actuator]. Moscow, ID BASTET Publ., 2013. 408 p.

[7] Lepyoshkin A.V., Mihaylin A.A., Sheypak A.A., eds. Ch. 2. Gidravlicheskie mashiny i gidropnevmoprivod. V kn.: Gidravlika i gidropnevmoprivod [Pt. 2. Hydraulic machine and hydraulic pneumatic actuator. In book: Hydraulics and hydraulic pneumatic actuator]. Moscow, MGIU Publ., 2007. 352 p.

[8] Yarots V.V., Shablovskiy A.S., Kuznetsov V.S. Analysis of the impact of design parameters and operating conditions on the performance data of straight-through flow control. Jelektr. Nauchno-Tehn. Izd. "Inzhenernyj vestnik" MGTU im. N.E. Baumana [El. Sc.-Tech. Publ. "Eng. Herald" of Bauman MSTU], 2013, no. 1 (in Russ.). Available at: http://engbul.bmstu.ru/doc/520072.html (accessed 07.07.14).