Electrodynamic Protection from Hollow-Charge Weapons. Physical Aspects of Functioning
Authors: Fedorov S.V. | Published: 29.05.2014 |
Published in issue: #3(96)/2014 | |
Category: Simulation of Processes | |
Keywords: explosion, shaped charge, shaped-charge jet, penetration action, electric current, electrodynamic protection |
A nonconventional method is considered for protecting different objects against the shaped-charge weapons by means of passing a powerful electric discharge through a shaped-charge jet to decrease a depth of its penetration into the target. Development of the necking-type magnetohydrodynamic instability and dispersion of jet material with its radial scattering are analyzed as possible physical mechanisms of a reduction in the penetrative ability of shaped-charge jets under exposure to the electric current. Based on generalization of results of numerical simulation of these effects, a computational procedure is developed for determining the penetration action of shaped charges under condition of passing a powerful pulse of electric current along the shaped-charge jet. The calculation results are compared with experimental data.
References
[1] Selivanov V.V. Sredstva porazhenija i boepripasy [Destruction means and explosives]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 984 p.
[2] Grigorjan V.A. Zashhita tankov [Protection for tanks]. Moscow, MGTU im. N.E. Baumana Publ., 2007. 327 p.
[3] Babkin A.V., Ladov S.V., Fedorov S.V. Electrical protection of advanced technology combat vehicle for the XXI century. Oboronnaja tehnika [Defence Technology ], 2000, no. 1-2, pp. 19-25 (in Russ.).
[4] Shvecov G.A., Matrosov A.D. Tr. VII Mezhdunar. Konf. "Generacija megagaussnyh magnitnyh polej i rodstvennye jeksperimenty" [Proc. VII Int. Conf. "Generation of megagauss magnetic fields and the related experiments"], Sarov, VNIIJeF Publ., 1997, pp. 979-986 (in Russ.).
[5] Shvecov G.A., Matrosov A.D. The current instability of shaped-charge jet. Tezisy Dokl. IV Mezhd. Konf. "Lavrent’evskie chtenija po matematike, mehanike i fizike" [Summ. Rep. IV Int. Conf. "Lavrentyev Readings on Mathematics, Mechanics and Physics"], Novosibirsk, IG SO RAN Publ., 1995, p. 132 (in Russ.).
[6] Matrosov A.D., Shvecov G.A. Experimental research of the current instability of shaped-charge jets. Prikl. Mekh. Tekh. Fiz. [J. Appl. Mech. Techn. Phys.], 1996, vol. 37, no. 4, pp. 9-14 (in Russ.).
[7] Shvecov G.A., Bashkatov Ju.L., Matrosov A.D. Using of magnetic cumulative generation (ICG) in experiments on the current destruction of the shaped-charges jets. Tr. VII Mezhdunar. Konf. "Generacija megagaussnyh magnitnyh polej i rodstvennye jeksperimenty" [Proc. VII Int. Conf. "Generation of megagauss magnetic fields and the related experiments"], Sarov, VNIIJeF Publ., 1997, pp. 987-991 (in Russ.).
[8] Pavlovskij A.I., Pljashkevich L.N., Shuvalov A.M., Brodskij A.Ja. Experimental researches for the destruction of the shaped-charge jet by pulsed electric current. Zh. Tekh. Fiz. [Techn. Phys. The Russ. J. Appl. Phys.], 1994, vol. 64, iss. 2, pp. 76-82 (in Russ.).
[9] Pavlovskij A.I., Pljashkevich L.N., Shuvalov A.M., Brodskij A.Ja. Some peculiarities investigation of the destruction process of the shaped-charge jet in a heavy-current mode. Zh. Tekh. Fiz. [Techn. Phys. The Russ. J. Appl. Phys.], 1994, vol. 64, iss. 5, pp. 43-48 (in Russ.).
[10] Babkin A.V., Kruzhkov V.A., Ladov S.V., Marinin V.M., Fedorov S.V. Behavior of metallic shaped-charge jet under the action of the current pulse. Tr. VII Mezhdunar. Konf. "Generacija megagaussnyh magnitnyh polej i rodstvennye jeksperimenty" [Proc. VII Int. Conf. "Generation of megagauss magnetic fields and the related experiments"], Sarov, VNIIJeF Publ., 1997, pp. 992-997 (in Russ.).
[11] Pollock C.E. Electromagnetic effect of the natural hydrodynamic instability of stretching, high velocity, metallic jets. In book "Megagauss Magnetic Field Generation and Pulsed Power Applications". Ed. Cowan M., Spielman R.B. N.Y., Nova Sci. Publ., 1994, pp. 309-316.
[12] Ogorkiewicz R.M. Future tank armors revealed. Janes Int. Defense Review, 1997, no. 5, pp. 50-51.
[13] Appelgren P., Westerling L., Skoglund M. Radial jet dispersion due to current interaction in an electric armour application. Proc. of the 24th Int. Symp. on Ballistics, New Orleans, USA, 2008, pp. 935-943.
[14] Shvetsov G.A., Matrosov A.D., Babkin A.V., Ladov S.V., Fedorov S.V. Behavior of metallic shaped-charge jets with passage of a pulsed electric current through them. Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 3, pp. 394400.
[15] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Regularities of stretching and ductile failure of metallic shaped-charge jets. Prikl. Mekh. Tekh. Fiz. [J. Appl. Mech. Techn. Phys.], 1999, vol. 40, no. 4, pp. 25-35 (in Russ.).
[16] Arkulis G.Je., Dorogobid V.G. Teorija plastichnosti [Plasticity theory]. Moscow, Metallurgija Publ., 1987. 352 p.
[17] Johnson G.R., Cook W.N. A constitutive model and data for metals subjected to large strains, high rates and high temperature. Proc. of the 7th Int. Symp. on Ballistics, Hague, Netherlands, 1983, pp. 541-547.
[18] Knopfel G. Pulsed High Magnetic Fields. Amsterdam, North-Holland Publ. Company, 1970, 373 p. (Russ. Ed.: Knopfel’ G. Sverhsil’nye impul’snye magnitnye polja. Moscow, Mir Publ., 1964. 392 p.)
[19] Chou PC., Carleone J. The stability of shaped-charge jets. J. Appl. Phys., 1977, vol. 48, no. 10, pp. 4187-4194.
[20] Fedorov S.V., Babkin A.V., Ladov S.V. Formation of magnetohydrodynamic instability of the shaped-charge jet exposing the electrodynamic impact. Oboronnaja tehnika [Defence Technology], 1998, no. 1-2, pp. 49-56 (in Russ.).
[21] Fedorov S.V., Babkin A.V., Ladov S.V., Shvecov G.A., Matrosov A.D. On the control possibility of a shaped-charge effect of explosion using electromagnetic impact. Fiz. Goreniya Vzryva [Combust., Explos., Shock Waves], 2000, vol. 36, no. 6, pp. 126145 (in Russ.).
[22] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Inertial stretching features of shaped-charge jets in free flight. Prikl. Mekh. Tekh. Fiz. [J. Appl. Mech. Techn. Phys.], 1997, vol. 38, no. 2, pp. 3-9 (in Russ.).
[23] Lavrent’ev M.A. Shaped-charge and principles of its operation. Usp. Fiz. Nauk [Sov. Phys.-Usp.], 1957, vol. 12, iss. 4, pp. 41-56 (in Russ.).
[24] Fedorov S.V., Babkin A.V., Ladov S.V. Shvecov G.A., Matrosov A.D. Penetration prediction of metallic shaped-charge jets by passing through them a powerful pulse of electric current. Zh. Tekh. Fiz. [Techn. Phys. The Russ. J. Appl. Phys.], 2003, vol. 73, iss. 7, pp. 28-36 (in Russ.).
[25] Marinin V.M., Babkin A.V., Kolpakov V.I. Analysis technique of functioning parameters of the shaped-charge. Oboronnaja tehnika [Defence Technology], 1995, no. 4, pp. 34-39 (in Russ.).
[26] Babkin A.V., Kruzhkov V.A., Lugovoj Je.V., Fedorov S.V. Mathematical simulation of stretching of the shaped-charge jet when electric current is passing through it. Oboronnaja tehnika [Defence Technology ], 1993, no. 9, pp. 36-39 (in Russ.).
[27] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. On a possible mechanism of destruction of the shaped-charge jet by current pulse. Oboronnaja tehnika [Defence Technology], 1995, no. 4, pp. 47-54 (in Russ.).
[28] Fedorov S.V., Omel’chenko E.Ju. Thermal and mechanical effects when powerful pulse of electric current is passing through metal shaped-charge jets. Sb. Dokl. VI Nauchn. konf. Volzhskogo regional’nogo centra RARAN "Sovremennye metody proektirovanija i otrabotki raketno-artillerijskogo vooruzhenija". V2-h tomah [Proc. 4th Sc. Conf. of Volga Regional Center of Russian Academy of Rocket and Artillery Sciences (RARAS) "Advanced methods of design and development of missile and artillery weapons". In two volumes], Sarov, FGUP "RFJaC-VNIIJeF" Publ., 2010, vol. 2, pp. 182-192 (in Russ.).
[29] Fedorov S.V. On the dispersion effect of metallic shaped-charge jets when a powerful pulse of electric current is passing through them. Zh. Tekh. Fiz. [Technical Physics. The Russ. J. Appl. Phys.], 2012, vol. 82, iss. 10, pp. 18-30 (in Russ.).
[30] Orlenko L.P. Fizika vzryva. V 2-h tomah [Physics of explosion]. In 2 volumes. 3rd Ed. Moscow, Fizmatlit Publ., 2004. 656 p. (vol. 2).