|

Design-Engineering Principles of Standardization of Characteristics of Solid-Metal High-Pressure Tanks in Rocket and Space Machine Building

Authors: Tarasov V.A., Baraev A.V., Filimonov A.S., Boyarskaya R.V. Published: 02.10.2014
Published in issue: #5(98)/2014  

DOI:

 
Category: Production Process Procedures and Machines  
Keywords: solid-metal high-pressure tanks, standardization, design characteristics optimization, influence of technology factor on optimization of design characteristics of standardized configuration

Based on analysis of literary sources it was discovered that solid-metal high-pressure tanks were unique object. It allows dealing with an actual problem of rocket-and-space machine building which is the standardization of rocket-and-space machinery. It was suggested to use internal energy accumulated in pressurized gas as an object of statistical analysis. This internal energy specifies running efficiency of high-pressure tanks within rocket-and-space machinery. Algorithms of optimization of design characteristics of high-pressure tank by the criterion of weight and prime cost were worked out. The algorithms take special features of tank production (dependency of defectiveness of joint weld and thickness of wall of spherical tank, the influence of hemisphere production method on weight of the tank, production expenses, etc.) into account. The algorithms allow optimization of design characteristics of high-pressure tanks which operate under cryogenic temperatures. Shown that thanks to the significant contribution of cost of stainless steels and titanic alloys in prime cost of all-metal HPB results of optimization of parameters of balloons on criteria of weight and prime cost coincide.

References

[1] Tarasov V.A., Kashuba L.A. Teoreticheskie osnovy tekhnologii raketostroeniya [Theoretical foundations of rocket technology]. Moscow, MGTU im. N.E. Baumana Publ., 2006. 351 p.

[2] Executive order (Decree) of the President of Russia V.V. Putin "O sisteme upravleniya raketno-kosmicheskoy otrasl’yu [The control system of space and missile industry]", Moscow, Adm. of the RF President, December 2, 2013, no. 874.

[3] Vasil’ev V.N. Organizatsiya proizvodstva v usloviyakh rynka [Organization of production in market conditions ]. Moscow, Mashinostroenie Publ., 1993. 368 p.

[4] Ipatov M.I., Postnikov V.I., Zakharova M.K. Organizatsiya i planirovanie mashinostroitel’nogo proizvodstva [Organization and planning of machinery production]. Мoscow, Vysshaya Shkola Publ., 1988. 367 p.

[5] State Standard of RF "GOST 23945.0-80". Unifikatsiya izdeliy. Osnovnye polozheniya. [Product unification. Basic principles]. Moscow, Izdatel’stvo standartov Publ., 1991. 8 p.

[6] Antonov G.A. Osnovy standartizatsii i upravleniya kachestvom produktsii [Fundamentals of standardization and product quality control]. SPb., SPBUEF Publ., 2011. 684 p.

[7] Metody optimizatsii resheniy v standartizatsii i unifikatsii. Sbornik trudov TsNII "RUMB" [Collect. Pap. of Central Scientific Research Institute "RUMB": "Methods of decisions optimization for standardization and unification"]. Leningrad, TsNII "RUMB" Publ., 1987. 84 p.

[8] Martino J.P. Technological forecasting for decision making. Hardcover. 2nd ed. Elsevier Science Ltd, 1983 . 404 p. (Russ. Ed.: Martino Dzh. Tekhnologicheskoe prognozirovanie. Moscow, Nauka Publ., 1997. 460 p.).

[9] Semenov G.E. Razrabotka protsessno-orientirovannogo podkhoda k modelirovaniyu organizatsionno-tekhnologicheskikh vidov deyatel’nosti v proizvodstvennykh sistemakh. Diss. kand. tekhn. nauk. Rossiyskiy gosudarstvennyy tekh. univ. im. K.E. Tsiolkovskogo [Development of a process-oriented approach to the modeling of organizational and technological activities in manufacturing systems. Cand. tech. sci. diss. Tsiolkovskiy Russ. St. Tech. Uni.]. Moscow, Tsiolkovskiy RSTU, MATI Publ., 2003. 144 p.

[10] Skvortsov M.A., Semenov G.E., Butko A.O., Martychenko I.V. Tekhnologicheskiy monitoring produktsii v protsessakh osnashcheniya proizvodstva [Technological monitoring in processes of equipment production]. SPb., SpbElTekh Publ., 2003, pp. 32-35.

[11] Tsyrkov G.A. Razrabotka metodiki kompleksnoy avtomatizatsii informatsionnogo soprovozhdeniya protsessov podgotovki proizvodstva slozhnykh tekhnicheskikh system. Diss. kand. tekhn. nauk. Rossiyskiy gosudarstvennyy tekh. univ. im. K.E. Tsiolkovskogo [Development of methodology for complex automation of information support of the processes of production preparation for complex technical systems. Cand. tech. sci. diss. Tsiolkovskiy Russ. St. Tech. Univ.]. Moscow, Tsiolkovskiy RSTU, MATI Publ., 2010. 151 p.

[12] Recommendations for Standardization "P 50.1.027-2001". Informatsionnye tekhnologii podderzhki zhiznennogo tsikla produktsii. Avtomatizirovannyy obmen tekhnicheskoy informatsiey. Osnovnye polozheniya i obshchie trebovaniya [Continuous acquisition and life-cycle support. Automated interchange of technical informations. Overview and general requirements]. Moscow, Standartinform Publ., 2002. 39 p.

[13] Recommendations for Standardization "P 50.1.028-2001". Informatsionnye tekhnologii podderzhki zhiznennogo tsikla produktsii. Metodologiya funktsional’nogo modelirovaniya [Continuous acquisition and life-cycle support. Methodology of functional modeling]. Moscow, Standartinform Publ., 2002. 54 p.

[14] Recommendations for Standardization "P 50.1.031-2001". Informatsionnye tekhnologii podderzhki zhiznennogo tsikla produktsii. Terminologicheskiy slovar’. Ch. 1. Stadii zhiznennogo tsikla produktsii [Continuous acquisition and life-cycle support. Glossary. Part 1. Product life-cycle stages]. Moscow, Standartinform Publ., 2002. 32 p.

[15] Pinto J.K., Slevin D.P. Critical success factors across the project life cycle. Project Management J., 1988, vol. 19, iss. 3, pp. 67-75.

[16] Ostroverkh A.I. Osnovnye printsipy sovershenstvovaniya organizatsionno-tekhnologicheskogo soprovozhdeniya proizvodstvennykh protsessov v mashinostroenii. Diss. dokt. tekhn. nauk. Rossiyskiy gosudarstvennyy tekh. univ. im. K.E. Tsiolkovskogo [Fundamentals for improved organizational and technological support of production processes at machinery production. Dr. tech. sci. diss. Tsiolkovskiy Russ. St. Tech. Univ.]. Moscow, Tsiolkovskiy RSTU, MATI Publ., 2007, 287 p.

[17] Kasaev K.S., Artemov Yu.A., Astakhov Yu.P., eds. Tekhnologicheskoe obespechenie slozhnykh tekhnicheskikh sistem. Entsiklopediya v 24 tomakh "Novye naukoemkie tekhnologii v tekhnike" [Technological support of complex technical systems. In encyclopaedia "New high technologies in technics". In 24 vol.]. Moscow, ENTSITEKH Publ., 1998. 396 p. (vol. 12, part 1).

[18] International standardization of commercial rocket and space technology. Elektronika: nauka, tekhnologiya, biznes [Electronika:NTB], 2001, no. 5, p. 74 (in Russ.).

[19] Filatov A.N., Sterlikov K.V., Mikushkina M.V. Technology of top-down design of rocket space engineering (RSE) based on decisions of the "PTK" company. Rats. Upr. Predpriyatiem [Rat. Enterpr. Man.], 2013, no. 2 (in Russ.).

[20] Prudnikov V.A. Metodika sistemnogo proektirovaniya kompleksa sredstv tekhnologicheskogo osnashcheniya dlya ispytaniy agregatov sistem upravleniya raketno-kosmicheskoy tekhniki na etape proizvodstva. Diss. kand. tekhn. nauk. FGUP GKNPTs im. M.V. Khrunicheva [Methodology of system design for complex of technological equipment means for testing of control systems aggregates of space rocket engineering at the production stage. Cand. tech. sci. diss. Federal state unitary enterprise "Khrunichev State Space Research and Production Center"]. Moscow, GKNPTs im. M.V. Khrunicheva Publ., 2006. 150 p.

[21] Sukhov G.M., Sukhov S.G. Tekhnologicheskoe prognozirovanie ispytaniy tekhnicheskikh sistem letatel’nykh apparatov [Technology forecasting of testing for engineering systems of aircraft]. Moscow, MATI Publ., 1993. 86 p.

[22] Petrov A.V. Modelirovanie organizatsionno-tekhnologicheskoy sredy sozdaniya raketno-kosmicheskoy tekhniki [Modeling organizational and technological environment for the creation of space rocket machinery]. Moscow, Mashinostroenie Publ., 1999. 318 p.

[23] Ostroverkh A.I., Sychev V.N., Tsyrkov A.V. Reengineering of organizational and technological support of the processes for production of space rocket machinery. Tekhnol. Mashinost. [Engin. Techn.], 2006, no. 8, pp. 88-91 (in Russ.).

[24] Shenaev M.O. Razrabotka metodiki i sredstv organizatsii tekhnicheskoy podgotovki seriynogo proizvodstva pnevmogidravlicheskikh sistem izdeliy aviatsionnoy tekhniki. Diss. kand. tekhn. Nauk. Rossiyskiy gosudarstvennyy tekh. univ. im. K.E. Tsiolkovskogo [Development of methods and means of the organization of technical training for full-scale production of pneumatic hydraulic systems for aeronautical engineering products. Cand. tech. sci. diss. Tsiolkovskiy Russ. St. Tech. Univ.]. Moscow, Tsiolkovskiy RSTU, MATI Publ., 2009. 146 p.

[25] Report of the Federal State Unitary Enterprise "Scientific-production association "Technomas". Ekspertnye otsenki i raschety tekhnologicheskoy trudoemkosti izgotovleniya sredstv vyvedeniya novogo pokoleniya, obespechivayushchikh effektivnoe reshenie zadach FKP" ["Expert estimates and calculations technological labor input of manufacturing launch vehicles of the new generation, providing effective decision of Federal Space Program’ tasks"]. Moscow, 2008 (unpubl.).

[26] Aeronautics and space within the Air Liquide Group. 2009. Available at: http://www.airliquide.com/file/otherelementcontent/pj/dp%20juin%2009%20ven55801.pdf (accessed 08.07.2014).

[27] Chumadin A.S., Ershov V.I., Barvinok V.A., Izbrannye glavy po avia- i raketostroeniyu (v konspektakh lektsiy) [Selected chapters on aircraft and rocket production (in the summaries of lectures)]. Moscow, Nauka i tekhnologii Publ., 2005, 850 p.

[28] Rach V.A. Optimization of cylindrical pressure cylinders by the criterion of the mass perfection. Mekh. komp. mat. [MCM Journal], 1990, no. 3, pp. 489-494 (in Russ.).

[29] Fabien B., Leard J.-Ph., Lefloch Ch. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner. 2005. Available at: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA445482 (accessed 08.07.2014).

[30] Medvedev A.A. Unification as a means of providing low unit cost and improving reliability of payload capability excretion by launch vehicle. Mat. XXX akademicheskikh chteniy po kosmonavtike [Proc. XXX Academic Readings on Space], Moscow, 2006 (in Russ.).

[31] Semenov G.E. Metodika konstruktivno-tekhnologicheskoy otrabotki gazodinamicheskikh sistem izdeliy RKT [Methodology of constructive-process for gas-dynamic systems of products of rocket space engineering (RSE)]. Mat. XXVI Gagarinskikh chteniy [Proc. XXVI Gagarin readings]. Moscow, LATMES Publ., 2000. 237 p.

[32] Gehm R. Scorpius space launch propels all-composite tanks forward. SAE International. 2008. Available at: http://articles.sae.org/2866/ (accessed 08.07.2014).

[33] Ponticel P. Manufacturing technology combo a first for aerospace. SAE International. 2010. Available at: http://articles.sae.org/7376/ (accessed 08.07.2014).

[34] Monaghan M. NASA picks Boeing for composite cryogenic propellant tank tests. SAE International. 2011. Available at: http://articles.sae.org/10275/ (accessed 08.07.2014).

[35] Popov I.P. Issledovanie protsessov shtampovki polusfer vytyazhkoy i obzhimom. Diss. kand. tekhn. Nauk [Research of processes of forming hemispheres using hood and crimp. Cand. tech. sci. diss.]. Moscow, 1976.

[36] Sizov E.S. Intensifikatsiya vytyazhnogo proizvodstva polykh detaley iz listovogo metalla. Ch. 1. Shtampovka-vytyazhka listovykh detaley plastichnym metallom [Intensification of exhaust production of hollow components from sheet metal. Part1. Stamping-hood of sheet components by using plastic metal]. Perm’, 1995. 239 p.