|

About Calculation of Plasma Parameters in the Technological Atmospheric-Pressure Pulse-Periodic Plasma System

Authors: Grishin Yu.M., Rydkin M.V. Published: 29.05.2014
Published in issue: #3(96)/2014  

DOI:

 
Category: Production Process Procedures and Machines  
Keywords: low-temperature plasma, plasmatron, pulse discharge, pulse plasma unit, calculation methods, modification of surface layers properties

Processes of accelerating the plasma formation in the hybrid double-stage pulse-periodic plasma systems (PPPS) that generate high-energy pulsed plasma flows under standard atmospheric conditions are investigated theoretically. Numerical simulations are performed and peculiarities of gas thermal-physical parameters distribution in the channel of PPPS electrode unit are defined at the stage of its filling with a low-temperature plasma generated by the system of stationary plasmatrons. A quadratic law of mass distribution in the channel, required for processes simulation at the pulse discharge stage, is established. Analysis of processes at the high-current pulse discharge stage is carried out on the basis of the system of electrodynamic approach equations. Features of dynamics of acceleration of the generated plasma formation are found on the basis of numerical calculation results. Dependences of the velocity, temperature, and other parameters of generated plasma on the main structural, electrotechnical and energetic PPPS parameters are defined. It is shown that a technological PPPS with the initial energy of capacity about 10 kJ makes it possible to generate plasma formations moving at a velocity up to 3 km/s and with a mass-average temperature up to 30 kK.

References

[1] Garkusha I.E., Derepovskij N.T., Kazakov O.E. Modification constructional and tool materials under irradiation plasma flows. Voprosy atomnoj nauki i tehniki [Problems of Atomic Science and Technology], 1997, pp. 172-175 (in Russ.).

[2] Usuba S., Heimann R.B. J. Thermal Spray Technol., 2006, vol. 15, no. 3, pp. 356-364.

[3] Ovchinnikov P.A., Opekan A.G., Protasov Ju.S. Kamrukov A.S. Radiacionnaja plazmodinamika. T. 1. [Radiant plasma dynamics]. Moscow, Jenergoatomizdat Publ., 1991. 566 p. (vol. 1).

[4] Grishin Y., Chivel Y., Bochkov V., Bochkov D., Suslov V., Vermel V. Proc. Power Modulator and High Voltage Conference (IPMHVC), San Diego, CA, USA, 2012, pp. 215-217.

[5] Aleksandrov V.V., Belan N.V., Kozlov N.P., Mashtylev N.A., Popov G.A., Protasov Ju.S., Hvesjuk V.I. Impul’snye plazmennye uskoriteli [Pulse Plasma Accelerators]. Kharkiv, Kharkiv Aviation Inst., Khar’kovskiy Aviacionnyj Inst. Publ., 1983. 247 p.

[6] Alekseev Ju.A., Kazeev M.N. Numerical simulation of two-dimensional flows in pulse plasma accelerators. Fiz. Plazmy (Moscow) [Plasma Phys. Rep.], 1981, vol. 7, no. 5, pp. 1084-1095 (in Russ.).

[7] D’jachenko V.F., Imshennik V.S. A two-dimensional magnetohydrodynamic model of plasma focus Z-pinch. Voprosy teorii plazmy [Reviews of Plasma Physics], 1974, iss. 8, pp. 164-246 (in Russ.).

[8] Lebedev A.D., Urjukov B.A., Zhukov M.F. Impul’snye uskoriteli plazmy vysokogo davlenija [Pulse accelerators for high-pressure plasma]. Novosibirsk, Inst. Teplofiziki SO AN SSSR Publ., 1990. 291 p.

[9] Trusov B.G. Modelirovanie himicheskih i fazovyh ravnovesij pri vysokih temperaturah [Modeling of chemical and phase equilibria at high temperatures]. Moscow, MGTU im. N.E. Baumana Publ., 1994. 50 p.

[10] Kolesnikov P.M. Jelektrodinamicheskoe uskorenie plazmy [Electromagnetic plasma acceleration]. Moscow, Atomizdat Publ., 1971. 389 p.

[11] Taussig R.T., Chen Y.G., Gross R.A. Strong shocks, snowplows, and magnetic pistons. Physics of Fluids, 1973, vol. 16, pp. 212-216. DOI: 10.1063/1.1694320