An Hydro-Pneumatic Suspension for a Horizontal Balance Beam of the Loading Platform
Authors: Efremova K.D., Pilgunov V.N. | Published: 10.12.2014 |
Published in issue: #6(99)/2014 | |
Category: Power-generating and Transport Machine Building | |
Keywords: hydro-pneumatic suspension, gaz-liquid hydroaccumulator, hydrocylinder differentiation, piston hydrocylinder cavity, rod hydrocylinder cavity |
The authors examine the possibility of creating a hydro-pneumatic suspension destinedfor horizontal balance beam of the loading platform. This suspension ensures small angular deviation of this platform relatively its specified initial horizontal position at the displacement of mass center for load located on this platform vs its vertical axis coordinates. An hydraulic scheme of this suspension with cross-strapped of the piston and rod hydrocylinder cavities is proposed. It includes the compensation of hydrocylinder differentiations with help of gaz-liquid hydroaccumulators. The method of the static characteristic calculation for hydro-pneumatic suspension has been developed for both displacement of the load mass center vs vertical axis coordinates ofplatform and under additional loading of one end of the balance beam. Recalculation of static characteristics for hydro-pneumatic suspension is carried out using an example of two standard sizes of hydrocylinders. Authors have estimated the influence both the cylinder differentiation and initial volumes of hydroaccumulator gaz cavities by deviation value of balance beam vs its horizontal position at the displacement of load mass center vs its vertical axis coordinates or under additional unilateral loading for one end of the balance beam. It has been shown that hydropneumatic suspension based on two differential hydrocylinders with cross-strapped of the piston and rod hydrocylinder cavities and two gaz-liquid hydroaccumulators may be used as an antiroll bar of the transport vehicle.
References
[1] Zheglov L.F. Avtomaticheskie sistemy podressorivaniya [Automatic cushioning system]. Moscow, MGTU im. N.E. Baumana Publ., 2012. 48 p.
[2] Massi P. Aktivnye (reguliruemye) podveski [Active (adjustable) suspension]. Moscow, VA BTV Publ., 1979 (cited pp. 12-17).
[3] Depres K., Martens K., Ramon H. Comfort improvement by passive and semi-active hydro-pneumatic suspension using global optimization technique. Proc. American Control Conf., Auchorage, USA, May 8-10, 2002.
[4] Kotiev G.O., Sarach E.B. Kompleksnoe podressorivanie vysokopodvizhnykh dvukhzvennykh gusenichnykh mashin [Integrated cushioning of high-mobility double-link tracked vehicles]. Moscow, Bauman MSTU Publ., 2010. 184 p.
[5] Smirnov A.A. Matematicheskoe modelirovanie pnevmogidravlicheskikh ustroystv sistem podressorivaniya transportnykh sredstv. Diss. kand. tehn. nauk [Mathematical simulation of pneumatic hydraulic devices for cushioning system of vehicles. Cand. tech. sci. diss.]. Moscow, MGTU im. N.E. Baumana Publ., 1999. 179 p.
[6] El Demerdash S.M., Crolla D.A. Hydropneumatic slow-active suspension with preview control. Vehicle System Dynamics, 1996, vol. 25, no. 5, pp. 369-386. DOI: 10.1080/00423119608968972
[7] Giliomee C.L., Els PS. Semi-active hydropneumatic spring and damper system. J. of Terrametrics, 1998, vol. 35, iss. 2, pp. 109-117. DOI: 10.1016/S0022-4898(98)00016-0
[8] Schuman A.R., Anderson R.J. Optimal control of an active antiroll suspension for an off road utility vehicle using interconnected hydra-gas suspension units. 17th IAVSD symposium "The dynamics of vehicles on roads and on tracks". Lyngby, Denmark, August 20-24, 2001. Supplement to J. "Vehicle System Dynamics", 2002, vol. 37, pp. 145-156.
[9] Pil’gunov V.N., Efremova K.D. The slave pneumatic actuator. Jelektr. nauchno-tehn. Izd. "Inzhenernyj zhurnal: nauka i innovacii" MGTU im. N.E. Baumana [El. Sc.-Techn. Publ. "Eng. J.: Science and Innovation" of Bauman MSTU], 2013, no. 4 (16) (in Russ.). Available at: http://engjournal.ru/catalog/it/nav/1095.html (accessed 01.10. 2014).
[10] Bauer W. Hydropneumatisch Federungssysteme. Springer-Verlag Berlin -Heidelberg, 2008, 50 p. (in Ger.). (Engl. ed.: Bauer W. Hydro-pneumatic suspension systems. Springer, 2011. 237 p.).
[11] Bashta T.M., Rudnev S.S., Nekrasov B.B. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydraulic machines, hydraulic drives]. Мoscow, Vysshaya Shkola Publ., 1991. 367 p.
[12] Moreau X., Nouillant C., Oustaloup A. Global and local suspension controls applied to vehicle braking on roads. Proc. of Europ.Control Conf. ECC. Seminario de Vilar, Porto, Portugal, September 4-7, 2001, pp. 3642-3647.
[13] Waller R., Naf W. Hydropneumatisches Querfeder - und Dampfungssystem fur Schienenfarzeuge [Hydro-pneumatic cross-spring and damping system for rail vehicles]. O+P (Olhydraulik und Pneumatik), 1997, vol. 41, no. 10, pp. 740-742.
[14] Nagornyy V.S., Denisov A.A. Ustroystva avtomatiki gidro- i pnevmosistem [Devices of automatics of hydro and pneumatic systems]. Moscow, Vysshaya Shkola Publ., 1991. 367 p.
[15] Dmitriev V.I., Gradetskiy V.G. Osnovy pnevmoavtomatiki [Fundamentals of pneumatic control]. Moscow, Mashinostroenie Publ., 1973. 360 p.
[16] Eulenbach D. Nivomat - Stand und entwicklungstrens hydropneumatischer niveauregelsysteme [Nivomat - Stand and development trends of hydropneumatic level control systems] Wer. Tagung "Kraftfahrzeugstossdampfer und ihr Einfluss auf das Fahrwerk, Komponenten und Systeme" [Proc. of workshop "Automobile shock absorber and its influence on the chassis, components and systems"]. Haus der Technik, Essen, Germany, November 25-26, 2003.