|

Use of Individual Throttle Devices for Hydraulic Profiling of the Coolant Flux in Reactor Model

Authors: Solonin V.I., Satin A.A., Getya S.I., Kobzev P.V. Published: 02.10.2014
Published in issue: #5(98)/2014  

DOI:

 
Category: Power-generating and Transport Machine Building  
Keywords: discharge header, throttling, aerodynamic experiment, computational fluid dynamics

Results of research of hydraulic characteristics of the coolant flow in fifty-five rod model of a core of a gas-cooled reactor and inside paths of the heat-carrier supply which contain throttle devices are presented. Conformity of experimental distributions of velocity and static pressure on an input to the core model, inside paths of a discharge header with results of the numerical simulation executed with the use of program complex ANSYS CFX v14.0 is shown. It is shown, that redistribution of the coolant flow behind a pressure head collector with vortex flow does not ensure flow balance input of the core but excludes pulsations of the charge in parts of cooling fuel elements under the big sufficiently hydraulic resistance factor of the throttle. Flow balance within section of a core is reached on distance of 10-15 hydraulic diameters of cooling paths.

References

[1] Dragunov Yu.G., Shmelev V.D., Denisov V.P., Vasilchenko I.N. Aktivnye zony VVER dlya atomnykh elektrostantsiy [Core of Water-Water Energetic Reactor for nuclear plants]. Moscow, Akademkniga Publ., 2004. 220 p.

[2] Dragunov Yu.G. Reactor unit for megawatt propulsion-power module. At. Energiya [At. Energy, pp. 1-3], 2012, vol. 113, no. 1, pp. 4-6 (in Russ.). DOI: 10.1007/s10512-012-9586-6

[3] Emel’yanov I.Ya., Mihan V.I., Solonin V.I., Dollezhal N.A., eds. Konstruirovanie yadernykh reaktorov. Uchebnoe posobie dlya VUZov [Design of nuclear reactors. The manual for higher educational institutions] Moscow, Energoizdat Publ., 1982. 402 p.

[4] Dragunov Yu.G., Lemekhov V.V., Smirnov V.S., Chernetsov N.G. Technical solutions and development stages for the BREST-OD-300 reactor unit. At. Energiya [At. Energy, pp. 70-77], 2012, vol. 113, no. 1, pp. 58-64 (in Russ.). DOI: 10.1007/s10512-012-9597-3

[5] Rezepov V.K., Denisov V.P., Kiriluk N.A., Dragunov Yu.G., Rizhov S.B. Reaktory VVER-1000 dlya atomnykh elektrostantsiy [Reactors Water-Water Energetic Reactor-1000 for nuclear energy plants]. Moscow, Akademkniga Publ., 2004. 333 p.

[6] Dragunov Yu.G., Loginov S.A., Bezrukov Yu.A. Eksperimental’noe obosnovanie teplogidravlicheskoy nadezhnosti reaktorov s VVER [The experimental substantiation is thermal-hydraulic reliability of WWER reactors]. Moscow, Akademkniga Publ., 2004. 255 p.

[7] Zhukauskas A.A. Konvektivnyy perenos v teploobmennikakh [Сonvective mass transfer in heat exchangers]. Moscow, Nauka Publ., 1982. 472 p.

[8] Khanzhonkov V.I. Aerodinamicheskaya kharakteristiki kol’tsevykh struy, natekayushchikh na ekran [Aerodynamic characteristics of the ring jets accumulating on the screen]. Promyshlennaya aerodinamika. Struynye techeniya [Industrial aerodynamics. Jet streams], 1966, iss. 27, pp. 145-179 (in Russ).

[9] Service Manual DISA Electronik a/s DK-2740 Scovlunde. DISA Information Department, 1975. 66 р.

[10] ANSYS, Inc. ANSYS CFX-Solver Theory Guide, Release 14, 2012.

[11] Versteeg H.K., Malalasekera W. An introduction to computational Fluid Dynamics. The Finite Volume Method. England, Longman Scientific & Technical, 1995. 267 p.