A Vortex Jet Device Applied in the Development of Active Hydro-Pneumatic Dampers Used in Rehabilitation Equipment

Authors: Uss A.Yu., Chernyshev A.V. Published: 28.03.2021
Published in issue: #1(136)/2021  

DOI: 10.18698/0236-3941-2021-1-185-204

Category: Power Engineering | Chapter: Vacuum, Compressor Technology, and Pneumatic Systems  
Keywords: shut-off and control devices, vortex jet device, pressure regulator, flow regulator, vortex valve, hydro-pneumatic damper

The paper overviews and analyses the current status of the development and research of active hydro-pneumatic dampers, which are used in rehabilitation equipment, where vortex jet devices can be applied as control valves. The study focuses on a vortex jet device whose distinctive feature is the absence of mechanically moving parts, describes the principle of its operation, and gives the rationale for using it in the active hydro-pneumatic damper of the knee module prosthesis. From a review of scientific and technical literature, a conclusion is drawn that active hydro-pneumatic dampers are used not only in rehabilitation equipment but also in vehicle shock absorbers. The experience gained in the design and development of active hydro-pneumatic dampers for vehicle shock absorbers was applied in the design and development of an active hydro-pneumatic damper for the knee module. In order to identify the advantages and disadvantages, we examined some designs of active hydro-pneumatic dampers for vehicle shock absorbers. Analysis of technical solutions showed the advantage of vortex jet devices, e.g. high reliability, the ability to work with various working environments, low manufacturing and operating costs; enabled us to recommend a vortex jet device to be used as an actuator, i.e., a vortex valve, in the valve assembly of an active hydro-pneumatic damper. The use of a vortex jet device increases the reliability of the structure and reduces the energy consumption for the control of the structure. The proposed design of the hydro-pneumatic damper allows the use of interactive damping control. The study is the first to introduce the concept and describe the principle of operation of an active hydro-pneumatic damper using a vortex jet device


[1] Bugaenko V.F. Pnevmoavtomatika raketno-kosmicheskih sistem [Pneumatic automation of space rocket systems]. Moscow, Mashinostroenie Publ.,1979.

[2] Levitsky M.P., Levitsky S.P. On the development of a regulating valve design with improved cavitational characteristic. HAIT J. Sc. Eng. B, 2006, vol. 3, pp. 1--16.

[3] Levitsky M. Control vortex valve. Patent WO 02/50456 A2, PCT/IL01/00666. Appl. 19.07.2002, publ. 27.06.2002.

[4] Залманзон Л.А. Теория элементов пневмоники. М., Наука, 1969.

[5] Lebedev I.V., Treskunov S.L., Yakovenko V.S. Elementy strujnoj avtomatiki [Elements of jet automation]. Moscow, Mashinostroenie Publ., 1973.

[6] Popov D.N. Issledovanie i raschet strujnyh elementov i cepej sistem avtomaticheskogo regulirovaniya [Research and calculation of jet elements and circuits of automatic control systems]. Moscow, Bauman MSTU Publ., 1977.

[7] Uss A.Yu., Chernyshev A.V. The development of the vortex gas pressure regulator. Procedia Eng., 2016, vol. 152, pp. 380--388. DOI: https://doi.org/10.1016/j.proeng.2016.07.718

[8] Uss A.Yu., Chernyshyov A.V., Krylov V.I. Development of gas pressure vortex regulator. AIP Conf. Proc., 2017, vol. 1876, no. 1, art. 020025. DOI: https://doi.org/10.1063/1.4998845

[9] Belova O.V., Starodubtsev A.A., Chernyshev A.V. Vortex gas pressure regulator. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, vol. 5 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2013-5-760

[10] Belova O.V., Starodubtsev A.A., Chernyshev A.V. Calculation of the vortex gas pressure regulator. Inzhenernyy vestnik: elektronnyy nauchno-tekhnicheskiy zhurnal [Engineering Bulletin: Electronic Publishing], 2014, vol. 10, pp. 61--68 (in Russ.). Available at: http://ainjournal.ru/doc/740398.html

[11] Boender J. A hydraulic prosthetic joint. Patent 2339995 EP. Appl. 27.09.2009, publ. 06.05.2010.

[12] Dixon J.C. The shock absorber handbook. Chichester, John Wiley & Sons, Ltd, 2007.

[13] Martynov N.V. Sposob dempfirovaniya kolebaniy i vihrevoy gidravlicheskiy amortizator [Vibration damping method and vortex hydraulic shock absorber]. Patent 2120389 RF. Appl. 22.04.1993, publ. 20.10.1998 (in Russ.).

[14] Fukushima N., Iwata K., Hidaka K. Vortex flow valve with pressure relief means for shock absorber. Patent 0053378 B1 EP. Appl. 27.11.81, publ. 02.10.85.

[15] Mayer E.A., Teitelbaum B.R. Fluid flow device for a shock absorber. Patent 3672474 US. Appl. 16.02.1970, publ. 27.06.1972.

[16] Smith D.H. Vortex valve shock absorber. Patent 3743222 US. Appl. 17.02.1972, publ. 03.07.1973.

[17] Bowles R.E. Acceleration controlled fluidic shock absorber. Patent 4082169A US. Appl. 12.12.1975, publ. 04.04.1978.

[18] Michael J.G., Schmidlin A.E. Fluidic recoil buffer for small arms. Patent 4335644 US. Appl. 07.05.1981, publ. 22.06.1982.

[19] Hidaka K., Fukushima N., Iwata K. Piston stroke responsive vortex-flow shock absorber. Patent 4515252 US. Appl. 25.05.1983, publ. 07.05.1985.

[20] Dourson S.E., Johnston G.L. Vortex valving assembly for a hydraulic damper. Patent 5070972 US. Appl. 18.06.1990, publ. 10.12.1991.

[21] Cooper D.R. A fluidic adaptive damper --- breadboard design, fabrication and test. Laboratory Techical Report. Taradcom. Warren, Michigan, 1979.

[22] Truhanov K.A., Prokopenko R.A. Analysis of the kinematics of the knee module with a hydraulic actuator and comparison of the calculation results with the behavior of the human knee joint when walking. Nauka i obrasovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2014, no. 11 (in Russ). DOI: 10.7463/1114.0736399