Simulation of Initiation and Development of Corrosion Cracks in Zirconium Fuel Claddings Under Conditions of Stress Corrosion Cracking in Environment of Iodine
Authors: Sotnikov A.S. | Published: 17.10.2019 |
Published in issue: #5(128)/2019 | |
Category: Power Engineering | Chapter: Nuclear Power Plants, Fuel Cycle, Radiation Safety | |
Keywords: E110 zirconium alloy, fuel cladding, stress corrosion cracking, simulation, reactor, operation |
The process models of iodine corrosion cracking of zirconium fuel claddings, used to calculate the durability of the cladding (time for loss of tightness) are considered. A method for determining the corrosion crack propagation rate in claddings made of E110 alloy Ø 9.1 × 0.65 mm and the results of corresponding studies (estimation of corrosion crack propagation rate and stress intensity factor KISCC) are given at a temperature of 380 °C in iodine environment at a concentration of ~ 0.2 mg/cm2. Studies were performed using tubular samples with a fatigue crack. A fatigue crack on the inner surface of cladding made of E110 Ø 9.1 × 0.65 mm alloy is the initiator of a corrosion crack emergence (nucleation). The results of corresponding studies are consistent with data from the literature. The proposed study of the corrosion cracking process of fuel claddings in accordance with the results of fracture mechanics is of practical importance for substantiation of the regulation of reactor operating conditions
References
[1] Novikov V.V., Kuznetsov V.I., Nesterov B.I. [Reactor experimental validation of transition exploitation modes for VVER fuel elements]. Yadernoe toplivo novogo pokoleniya dlya AES [New-generation nuclear fuel for atomic power stations]. Moscow, AO "VNIINM", 2016.
[2] Sotnikov A.S., Novikov V.V., Medvedev A.V., et al. Effect of inner FR medium of high burnup fuel on shells destruction at corrosion cracking under stress conditions. Voprosy atomnoy nauki i tekhniki. Ser. Materialovedenie i novye materialy, 2012, no. 1, pp. 107--114 (in Russ.).
[3] Cox B., Wood J.S. Corrosion problems in energy conversion and generation. Electrochemical Society, 1974.
[4] Nikulin S.A. Corrosion cracking of Zr shell tubes (a review). I. Methods of the study and mechanisms of the fracture. Metallovedenie i termicheskaya obrabotka metallov, 2005, no. 2, pp. 31--39 (in Russ.).
[5] Nikulin S.A., Rozhnov A.B. Corrosion fracture of shell zirconium tubes. Review. 2. The effect of external factors, structure and properties of the alloys. Metallovedenie i termicheskaya obrabotka metallov, 2005, no. 9, pp. 30--37 (in Russ.).
[6] Sidky P.S. Iodine stress corrosion cracking of Zircaloy reactor cladding: iodine chemistry (a review). J. Nucl. Mater., 1998, vol. 256, no. 1, pp. 1--17. DOI: 10.1016/S0022-3115(98)00044-0
[7] PNAE G-1-024-90. (PBYa RU AS-89). Pravila yadernoy bezopasnosti reaktornykh ustanovok atomnykh stantsiy [PNAE G-1-024-90. (PBYa RU AS-89). Nuclear safety rules of reactor plants]. Moscow, Gospromatomnadzor SSSR Publ., 1990.
[8] NuREG-800. U.S. Nuclear Regulatory Commission, 2007.
[9] Miller A.K., Ocken H., Tasooji A. Iodine stress corrosion cracking of Zircaloy: laboratory data, phenomenological model and predictions of in-reactor behavior. J. Nucl. Mater., 1981, vol. 99, no. 2--3, pp. 254--268. DOI: 10.1016/0022-3115(81)90194-X
[10] Miller A.K., Shallenger K.D., Tasooji A. SCCIG: A phenomenological model for iodine stress corrosion cracking of Zircaloy. EPRI Report NR-1798. Vol. 1. Electric Power Research Institute, 1981.
[11] Tasooji A., Einizieger R., Miller A.K. Modeling of Zircaloy stress corrosion cracking: texture effects and dry storage spent fuel behavior. Zirconium in the nuclear industry. Proc. 6th Inter. Symp. ASTM STP 824, 1984, pp. 595--626.
[12] Videm K., Lunde L., Hollowell T., et. al. Cracking of cladding tubes by power ramping and by laboratory stress corrosion experimental. J. Nucl. Mater., 1979, vol. 87, no. 2--3, pp. 259--267. DOI: 10.1016/0022-3115(79)90562-2
[13] Novikov V.V. Assessment of rupture resistance at corrosion of fuel element shell material fuel element under tension. Zavodskaya laboratoriya, 1984, vol. 85, no. 3, pp. 67--70 (in Russ.).
[14] Bibilashvily Yu.k., Dolgov Yu.N., Nesterov B.I., et al. Propagation of stress corrosion cracks in Zr-1% Nb claddings. J. Nucl. Mater., 1995, vol. 224, pp. 307--310. DOI: 10.1016/0022-3115(95)00114-X
[15] Sotnikov A.S. Vliyanie yoda i yodida tseziya na korrozionnoe rastreskivanie pod napryazheniem obolochek iz splava Zr-1 %Nb tvelov vodookhlazhdaemykh reaktorov. Diss. kand. tekh. nauk [Effect of iodine and cesium iodide on corrosion cracking of fuel element shells from Zr-1 %Nb-alloy for water-cooled reactors]. Moscow, VNIINM Publ., 1989.
[16] Novikov V.V. Razvitie konstruktsiy i materialov tvelov dlya VVER. Yadernoe toplivo novogo pokoleniya. Rezul’taty razrabotki, opyt ekspluatatsii i napravlenie razvitiya [Results of development, exploitation experience and growth options]. Moscow, 2014.